

Running Redis on VMware Tanzu

Kubernetes Grid 2

Table of Contents
Running Redis on VMware Tanzu Kubernetes Grid 2 .. 1

Overview .. 3

Introduction ... 3

Prerequisites .. 3

Technology Component... 4

VMware Tanzu Kubernetes Grid 2 ... 4

Redis Enterprise Software ... 4

Benchmark Tools ... 5

Solution Configuration ... 6

Architecture ... 6

Tanzu Kubernetes Grid and Redis Configuration ... 6

Hardware Resource ... 9

Software Resource ... 9

VM Configuration .. 10

Networking Configuration ... 10

Application Deployment and Validation .. 11

Redis Enterprise Cluster Deployment .. 11

Redis Enterprise Cluster Performance Validation ... 12

Use Case Demonstration ... 15

High Availability Validation .. 17

Best Practice .. 19

Conclusion ... 21

Additional Resources ... 22

About the Author and Contributors .. 23

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

Overview

Introduction

Redis is the open source in-memory data structure store used by millions of developers as a database, cache, streaming engine,

and message broker. Redis has built-in replication, transactions and various levels of on-disk persistence and provides high

availability and automatic partitioning with Redis Cluster. Redis Enterprise Software is a self-managed data platform that

unlocks the full potential of Redis at enterprise scale. Redis Enterprise for Kubernetes provides a simple way to get a Redis

Enterprise Cluster on. It leverages the Redis Kubernetes Operator to reliably manage application in an extensible, modular way

while automating the deployment of clusters and databases.

This paper provides the guidelines of Redis Enterprise Software for Kubernetes on VMware Tanzu® Kubernetes Grid™ 2. And it

covers the generic functional, performance testing, and use case demonstration.

Prerequisites

You must firstly set up a reference architecture environment for Tanzu Kubernetes Grid 2. And then, the material takes you

through the steps to install Redis Enterprise Software for Kubernetes.

https://redis.io/
https://redis.com/redis-enterprise-software/overview/
https://docs.redis.com/latest/kubernetes/
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html
https://docs.redis.com/latest/kubernetes/

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

Technology Component

The technology components in this solution are:

• VMware Tanzu Kubernetes Grid 2.0

• Redis Enterprise Software

• Benchmark tools

VMware Tanzu Kubernetes Grid 2

VMware Tanzu Kubernetes Grid provides organizations with a consistent, upstream-compatible Kubernetes substrate that is

ready for end-user workloads and ecosystem integrations. It uses a new API called ClusterClass that defines a common cluster

configuration for different infrastructure providers. Tanzu Kubernetes Grid 2 deploys clusters using an opinionated

configuration of Kubernetes open-source software that is supported by VMware, so that you do not have to build a Kubernetes

environment by yourself, it also provides packaged services such as networking, authentication, ingress control, and logging

that are required for production Kubernetes environments.

Tanzu Kubernetes Grid 2 supports two types of deployment models: supervisor deployment and standalone management

cluster deployment. Supervisor deployment allows you to create and operate workload clusters natively in vSphere with Tanzu

and leverage many vSphere features. Standalone management cluster deployment allows you to create workload clusters on

vSphere 6.7, 7, and 8 without supervisor, or on AWS.

Redis Enterprise Software

Redis is a popular NoSQL database and an in-memory data store supporting multiple abstract data structures. These structures

include strings, lists, hashes, sets, and streams. Redis Enterprise is a self-managed and enterprise-grade version of Redis. It

maintains the simplicity and high performance of Redis, while adding many enterprise-grade capabilities including:

• Linear scalability

• High availability

• Geo-replicated, active-active data distribution

• Predictable performance

Redis Enterprise Software is the on-premises distribution of Redis Enterprise. You can deploy and manage a Redis Enterprise

Software cluster wherever you like.

A Redis cluster is a set of Redis instances that automatically shards data across nodes. Using a cluster gives users the ability to

split their datasets among nodes and keep running the database even when some nodes fail.

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

Benchmark Tools

Redis-benchmark: It is a quick way to get some figures and evaluate the performance of a Redis instance on a given hardware. It

simulates running by N clients while at the same time sending M total queries. Redis supports pipelining, so it is possible to

send multiple commands at once, a feature often exploited by real-world applications.

Memtier_benchmark: It is a command line utility for load generation and benchmark NoSQL key-value databases. It supports

both Redis and Memcache protocols, read-write ratio, random payload, random or ranged key expiration and Redis cluster

mode.

https://redis.io/docs/management/optimization/benchmarks/
https://github.com/RedisLabs/memtier_benchmark

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

Solution Configuration

Architecture

In our solution, we deployed Redis Enterprise Software for Kubernetes test environment using Tanzu Kubernetes Grid on a four-

node vSphere cluster.

Figure 1. Redis Enterprise Software Running on Tanzu Kubernetes Grid

Tanzu Kubernetes Grid and Redis Configuration

We performed the following procedures for Tanzu Kubernetes Grid and Redis configuration:

1. We deployed the Tanzu management cluster with Tanzu CLI by an installer UI, you can also deploy the cluster with a

configuration file. Refer to deploying Tanzu standalone management clusters for more details.

2. After deploying a Tanzu Kubernetes Grid management cluster in vSphere, we used the Tanzu CLI to deploy the Tanzu

Kubernetes Grid workload cluster. You could deploy a class-based Tanzu workload cluster from a cluster configuration

file, or you can also deploy a plan-based cluster or Tanzu Kubernetes Grid Cluster. Refer to Create Workload Clusters for

more details. To deploy a Redis Cluster on Tanzu Kubernetes Grid, we recommend configuring a Tanzu Kubernetes Grid

workload cluster with at least three worker nodes; each node is requested with a minimum value of 24 vCPU, 72GB

memory, and 2TB disk space.

https://tanzu.vmware.com/kubernetes-grid/
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2.1/tkg-deploy-mc-21/mgmt-deploy-index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2.1/using-tkg-21/workload-clusters-deploy.html

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

3. Then we deployed a Redis cluster to the Tanzu Kubernetes Grid workload cluster. You can either use Bitnami’s Redis

Helm Chart or Redis Enterprise Operator to deploy the Redis cluster. The operator allows Redis to deploy and manage

the lifecycle of a Redis Enterprise Cluster in customized options. Each Redis Enterprise Database can also scale

horizontally across multiple Tanzu Kubernetes Grid cluster worker nodes for sharding or replication, which ensures high

availability with Redis Enterprise replicas.

Sharding is a type of database partitioning that separates large databases into smaller, faster, and more easily managed

parts. To create a sharded cluster, you need to first specify the number of shards, and data will automatically be sharded

or be divided into groups and placed on optimal nodes.

The Redis Enterprise Cluster node can be deployed in one of the following four types:

Figure 2. Redis Architectures

• Simple database: one single primary shard

• HA (High Availability) database: one pair of primary and replica shards

• Clustered database: multiple primary shards, each managing a subset of the dataset

• HA clustered database: multiple pairs of primary/replica shards

You could also use Bitnami to deploy Redis on Kubernetes. Bitnami supports two deployment options for Redis: HA clustered

database and a Clustered database.

• If your workload demands high read throughput, using the HA cluster helps offload the read operations to the

https://bitnami.com/

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

replicas. In a failure case, it can promote a replica to primary.

• Redis cluster also supports high availability with each primary connected to one or more replicas. When the primary

node crashes, one of the replicas will be promoted to the primary node.

In the production environment, you need to pay attention to the persistence to disk. It provides two persistence options:

• Redis Database (RDB): point-in-time snapshots.

• Append only File (AOF): logs of each Redis operation.

It is also possible to combine both options above, but it is important to understand the tradeoffs of the two options.

RDB is a compact snapshot optimized for a typical backup operation. RDB backup operation has minimal impact on Redis

performance. In disaster recovery scenarios, RDB boots up faster than AOF because the file size is smaller. However, because

RDB is a point-in-time snapshot, it will lose the updated or new created data after the last taken snapshot if failure occurs.

AOF keeps a log of each operation and is more durable than RDB as it can be configured to fancy on every second or write

operation. You can have different fsync policies: no fsync at all, fsync every second, fsync at every query. With the default policy

of fsync every second, write performance is still great. fsync is performed using a background thread. In the event of an outage,

AOF can run through the log and replay each operation. Redis can also automatically and safely rewrite the AOF in the

background if it gets too big. The tradeoff of AOF is file size and speed. With the replication turned on, sometimes the replicas

cannot sync with the primary node fast enough to retrieve all the data. AOF can also be much slower than RDB with the fsync

policy. Redis Helm Chart enables AOF and disables RDB by default.

Table 1. Comparison between RDB and AOF

 A P P E N D - O N LY F I LE (A O F) S N A P S H O T (R D B)

Resource Intensity Higher Lower

Recovery Time Longer Shorter

Capacity Requirement Higher Lower

Durability Longer Shorter

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

Hardware Resource

We validated the solution with a four-node vSphere cluster. Table 1 shows the specification of each node.

Table 2. Hardware Configuration

P R O P E R T Y S P E C I F I C A T I O N

CPU 2 x Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz, 28 core each

RAM 480GB

Network adapter 2 x Intel 10Gb Ethernet Controller X550

Storage adapter 1 x Dell HBA330 Mini Adapter

Disks
Cache - 2 x 1.46TB NVMe

Capacity - 8 x 1.75TB SSD

Software Resource

Table 3. Software Resources

S O F T W A R E V E R S I O N P U R P O S E

VMware vSphere 8.0 VMware vSphere is a suite of products: vCenter Server and ESXi.

Redis Enterprise Software 6.4.2

Redis is a popular NoSQL database and an in-memory data store supporting

multiple abstract data structures. Redis Enterprise is a self-managed and

enterprise-grade version of Redis.

Tanzu CLI V0.28.0
Command line interface that allows deploying CNCF conformant Kubernetes

clusters to vSphere and other cloud infrastructure.

Kubernetes

V1.24.9

Kubernetes is an open-source system for automating deployment, scaling,

and management of containerized applications.

Kubernetes OVA for Tanzu

Kubernetes Grid

Photon

v1.24.9+vmware.1

A base image template for the Kubernetes operating system of Tanzu

Kubernetes Grid management and workload clusters.

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

VM Configuration

Table 4. VM Configuration

VM Role vCPU Memory (GB) Storage (GB) VM Count

Tanzu Kubernetes Grid

management cluster – control

plane VM

2 4 20 1

Tanzu Kubernetes Grid

management cluster – worker

node VM

2 4 20 1

Tanzu Kubernetes Grid workload

cluster – control plane VM
4 32 120 3

Tanzu Kubernetes Grid workload

cluster – worker node VM
24 72 2000 3

Networking Configuration

Tanzu Kubernetes Grid is configured with Virtual Distributed Scheduler (VDS). MetalLB (see installation instructions) provides

load balancing for external services.

https://metallb.universe.tf/installation/

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

Application Deployment and Validation

This solution testing highlights the deployment, performance, and high availability use cases with Redis Enterprise Software

running on Tanzu Kubernetes Grid 2.

Redis Enterprise Cluster Deployment

You can either use Bitnami’s Redis Helm Chart or Redis Enterprise Operator to deploy Redis on the Tanzu Kubernetes Grid

workload cluster. Redis provides a Kubernetes Operator that deploys and manages a Redis Enterprise Cluster. Operator allows

Redis to deploy and manage the lifecycle of a Redis Enterprise Cluster in customized options.

Figure 3. Redis Cluster Deployment with Redis Enterprise Operator

Perform the following steps for Redis Enterprise Cluster deployment:

1. Deploy the operator bundle in your REC namespace:

kubectl apply -f https://raw.githubusercontent.com/RedisLabs/redis-enterprise-k8s-docs/$VERSION/bundle.yaml

2. Check the operator deployment to verify whether it is running:

kubectl get deployment redis-enterprise-operator

3. Create a Redis Enterprise Cluster. To scale up node compute resource (the default value of CPU and memory is 2

cores and 4GB), you can add node resources to the spec section of the cluster. Redis Enterprise Software supports

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

using Redis on Flash, which extends node memory to use both RAM and flash storage. SSDs (solid state drives) can

store infrequently used (warm) values while your keys and frequently used (hot) values are still stored in RAM. This

improves performance and lowers costs for large datasets. Before creating Redis cluster or database, you should

provision the flash storage as local persistent volumes with a unique name StorageClass. For more information, see

Use Redis on Flash on Kubernetes. To deploy a Redis Enterprise Cluster with Redis Enterprise Operator, the spec

should include a persistentSpec section. Persistence storage is a requirement for production deployments, refer to the

YAML file for more information.

4. Create Redis Enterprise Database with the customized resource. You could also configure the memory size and the

replica of a database. Wait for the status of database to be active and the database is ready to use then.

Redis Enterprise Cluster Performance Validation

We used built-in redis-benchmark and memtier_benchmark tool to generate loads for Redis. In the performance testing, we

provisioned a cluster of three Redis instances, each instance was configured with 4 vCPUs and 24GB of RAM.

Scenario 1: We used redis-benchmark to compare Redis Enterprise Database with 1/2 sharding with or without replicas. We

performed the following command:

redislabs@rec-0:/etc/opt/redislabs$ redis-benchmark -h redb -p 10377 -a xxx -q -n 10000000 -c 100 -P 50 -r 100000000000 set key:rand_int

rand_int

The command options created 100 parallel connections to run 10,000,000 SET requests using random keys to the Redis server.

The pipeline size was set to 50.

https://docs.redis.com/latest/kubernetes/re-clusters/redis-on-flash/
https://github.com/vsphere-tmm/tkg-tanzu-rabbitmq/blob/main/rec.yaml
https://redis.io/docs/management/optimization/benchmarks/
https://github.com/RedisLabs/memtier_benchmark
http://rec-0/etc/opt/redislabs$

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

Table 4. Performance with Redis Database Enabling or Disabling Shard and Replica

 Mode Throughput Latency

Case 1 Redis Clustering disabled 1095650.25 requests per second P50=4.159 ms

Case 2 Redis Clustering enabled

shard count=2

902771.56 requests per second P50=2.767 ms

Case 3 Redis Clustering disabled

Replicas count=2

1070663.75 requests per second P50=4.159 ms

Comparing to case 1, we can see the throughput result in case 3 was a little bit lower because Redis automatically handles the

part of data sync between the two instances. However, we got similar performance result with high availability function in case

3.

Comparing to case 1, we added shards using the online method in case 2, the latency was improved with a little degradation in

throughput because scaling is a compute-intensive operation. Redis cluster resharding online process continues to serve

requests through the scaling operation.

Scenario 2: We used the memtier_benchmark tool to operate a performance benchmark of Redis Enterprise Software. It is

recommended to run memtier_benchmark on a separate node that is not part of the cluster being tested. If you run it on a

cluster node, note that it affects the performance of both the cluster and the memtier_benchmark tool.

• Write-to-read ratios of 5:95 (5% write and 95% read).

• Use the object size of 1,000 bytes to simulate with 50 concurrent clients:

- Database persistence is kept to default.

- Replication is disabled.

- One database instance is used, which is composed of 4 vCPUs and 24GB of RAM.

memtier_benchmark -s 100.96.3.15 -p 12250 -a redb -t 5 -c 10 -d 1000 --test-time 300 --run-count 3 --key-maximum=1000000 --

command="set __key__ __data__" --command-ratio=5 --command="get __key__" --command-ratio=95 --hide-histogram

https://github.com/RedisLabs/memtier_benchmark

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

You would get the output as follows:

You can observe the overall database CPU from the following metric diagram.

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

Figure 4. Redis Database CPU Usage Metric

Memtier_benchmark has several configuration options that can be tuned to better emulate the workload on your Redis server,

in addition to offering cluster support. To simulate real-world environments, memtier_benchmark will test for GET and SET

requests on a ratio of 5:95 or 1:10. This is more representative of a common web application using Redis as a database or

cache. Thus, we recommend using the Memtier_benchmark tool for performance measuring in customer real cases.

Scenario 3: We tested the performance of a Redis on Flash (RoF) enabled database. Firstly, we configured a database instance

with 4 vCPU and 24GB RAM to serve RoF data. RoF always keeps the Redis keys and Redis dictionary in RAM and the additional

RAM is required for storing hot values. For these tests, 30% RAM was configured as an optimal value.

Table 5. Performance Results with RoF Enabled or Disabled

Database SET Throughput SET Latency GET Throughput GET Latency

RoF enabled 40854.18 requests per

second

P50=6.447 ms 40107.49 requests per second P50=6.551 ms

RoF disabled 39598.63 requests per

second

P50=6.719 ms 40005.76 requests per second P50=6.727 ms

Additionally, we compared the performance of an RoF enabled database with or without replication. We noticed an average

throughput of:

• Around 255,497 ops/sec with the average latency of 1.9ms when testing without replication (for example, four

primary shards)

• Around 188,226 ops/sec with the average latency of 2.65ms when testing with enabled replication (for example, four

primary and two replica shards)

With replication enabled, your dataset is replicated to a replica shard, which is constantly synchronized with the primary shard.

We can see from the results that with replication enabled, the throughput was lower and the latency was a bit higher.

However, the data was still in normal state and the database replication ensured high availability.

Use Case Demonstration

In addition to the Redis performance validation, we also introduced the use case of integrating Redis into Kafka data pipelines

by using the Kafka connector. This session demonstrates the use case scenario validation.

You can use the source connector to subscribe the Redis Pub/Sub records and write the messages to Kafka. And use the sink

connector that consumes Kafka records in a Redis command format and applies them to Redis.

https://docs.redis.com/latest/rs/databases/redis-on-flash/

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

Figure 5. Kafka Connecting with Redis

Send a request to Kafka Connector API to configure it to use kafka-connect-redis. We would listen to all key space and key

notifications in Redis.

• Source: Set up Kafka topic listener and create Redis events such as SET and SADD commands and from the Kafka client to

catch up to the records that have already been there.

• Sink: Write records to Kafka, allowing you to use payload JSON format including schema and actual data, in a new terminal

to confirm records in Redis.

We connected Kafka to Redis database with the following procedures:

1. We set up Kafka-connect-redis pods against Redis and Kafka cluster (they are on the same cluster) on Tanzu

Kubernetes Grid by following the YAML file. We used the following JSON to sink-connector.json and used the curl

command to post the configuration to one of the Kafka workers record serialization format to make a POST request

against the Kafka Connect REST API.

curl -X POST -H "content-type: application/json" -d @/Users/yimengl/sink-connector.json http://localhost:8083/connectors

{"name":"demo-redis-sink-

connector","config":{"connector.class":"io.github.kafkaconnectredis.sink.RedisSinkConnector","key.converter":"org.apache.kafka.connect.jso

n.JsonConverter","value.converter":"org.apache.kafka.connect.json.JsonConverter","tasks.max":"1","topics":"redis.commands","redis.uri":"r

edis://IEPfIr0eLF7UsfwrIlzy80yUaBG258j9@redis-cluster","redis.cluster.enabled":"true","name":"demo-redis-sink-

connector"},"tasks":[],"type":"sink"}%

2. After the connector for Redis was up and running, we wrote some records to Kafka and watched the data to be

displayed in Redis. We opened the console producer and configured it to write records to the redis.commands topic:

kafka-console-producer --bootstrap-server kafka-broker-0.kafka-broker:9092 --topic redis.commands

We wrote a Redis SET command record with schema and wrote the actual data called “payload” in the JSON object:

>{"payload":{"key":"{user.1}.username","value":"watermelon1"},"schema":{"name":"io.github.kafkaconnectredis.RedisSetCommand","type":

"struct","fields":[{"field":"key","type":"string","optional":false},{"field":"value","type":"string","optional":false},{"field":"expiration","type":"s

truct","fields":[{"field":"type","type":"string","optional":false},{"field":"time","type":"int64","optional":true}],"optional":true},{"field":"conditi

on","type":"string","optional":true}]}}

https://github.com/LYM-hub/redis-for-TKG/tree/main

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

3. We ran a redis-client pod to connect to the Redis cluster to check whether the connector was working.

100.96.3.69:6379> GET {user.1}.username

-> Redirected to slot [9645] located at 100.96.1.36:6379

"watermelon1"

We can build a real-time inventory system using Kafka connector to seamlessly integrate to transform the data from the write-

optimized to read-optimized data model and allow Redis Enterprise to serve it in real-time. Kafka acting as the real-time data

pipeline, gathers and distributes events from several different sources such as the warehouse, the order management system,

and the sales forecasting system. The pipeline provides information to the inventory manager.

Redis Enterprise is the in-memory database that enables real-time data access and maintains the inventory state with instant

changes in the merchandise being tracked. The inventory status is then sent back to Kafka, who distributes this information to

marketing, stores, and fulfillment. Together, Kafka and Redis Enterprise ensure the inventory is tracked and communicated in

real time throughout the organization; they provide real-time data access with a real-time data pipeline.

Figure 6. Real-time Inventory System via Kafka and Redis

High Availability Validation

Redis Enterprise Software comes with several features that make your data more durable and accessible, which can help

protect your data in case of failures or outages. This session illustrates the Redis high availability scenario validation.

Replication in Redis follows a simple primary-replica model where the replication happens in one direction, from the primary to

one or multiple replicas. Data is only written to the primary instance and replicas are kept in sync. To create a database replica,

you can configure in the replicaSources section of the RDB.

apiVersion: v1

kind: Secret

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

metadata:

 name: my-replica-source

stringData:

 url: replica-source-url # “UI > database > configuration > Press the button Get Replica of source URL” in the administrative UI

Then create a database replica using the YAML file. After the replica database is active, the replica will try to sync with the

primary database. Replicas are read-only, which means that you can configure your clients to read from them, but you cannot

write data to them. If you need additional read throughput, you can configure your Redis client to read from replicas as well as

from your primary node.

When a Redis Enterprise Cluster loses contact with more than half of its nodes either because of failed node or network split,

the cluster stops responding to client connections. When this happens, you must recover the cluster to restore the connections.

The Redis Enterprise for Kubernetes automates these recovery steps, but the cluster must be deployed with persistence. For

the cluster recovery, you could set the clusterRecovery flag to true and wait for the cluster to be recovered until it is in the

‘Running’ state. And then restore a failed database from backup, AOF, or snapshot files.

You could create a snapshot of the data in source cluster and then restore it in a new cluster with the new parameters:

1. Copy the dump file from the Redis node for backup.

2. Before starting the restore process, to determine whether AOF is enabled. AOF tracks each write operation to the

Redis database. Because we tried to restore from a point-in-time backup, we do not want Redis to re-create the

operations stored in its AOF file. Modify the appendonly parameter to ‘No’.

3. Start the new Redis cluster to mount the PVC with the recovery files to the new cluster nodes.

4. Recover the database using rladmin CLI.

An active-active architecture is a data resiliency architecture that distributes the database information over multiple data

centers via independent and geographically distributed clusters and nodes. It is a network of separate processing nodes, each

having access to a common replicated database so that all nodes can participate in a common application ensuring local low

latency with each region being able to run in isolation. Redis Enterprise active-active databases provide read and write access to

the same dataset from different Kubernetes clusters.

Clustering and replication are used together in active-active databases to distribute multiple copies of the dataset across

multiple nodes and clusters. As a result, a node or cluster is less likely to become a single point of failure. If a primary node or a

primary shard fails, a replica is automatically promoted to the primary mode. To avoid having one node holding all copies of

certain data, the replica HA feature (enabled by default) automatically migrates replica shards to available nodes. In this case,

there would be no data loss and the database is still accessible during the node or shard failure.

https://github.com/vsphere-tmm/tkg-tanzu-rabbitmq/blob/main/replicas%20database.yaml
https://docs.redis.com/latest/rs/databases/configure/replica-ha/

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

Best Practice

The following recommendations provide the best practices and sizing guidance to run Redis Enterprise Clusters on Tanzu

Kubernetes Grid.

• Tanzu Kubernetes Grid:

▪ Use the latest OVA image to create Tanzu Kubernetes Grid management and workload cluster that runs

Redis Enterprise Cluster.

▪ Customize and pre-allocate Performance Best Practices for Kubernetes with VMware Tanzu for sizing

guidance for Tanzu Kubernetes Grid.

▪ For multiple vSphere clusters managed all managed by the same vCenter server in a single datacenter,

Tanzu Kubernetes clusters can be deployed applications across clusters using zones to achieve high

availability for workloads.

• vSAN Storage:

▪ vSAN supports the dynamic persistent volume provisioning with Storage Policy Based Management (SPBM).

▪ For single vSAN cluster, we can deploy Redis without replication and the data resiliency can be protected by

vSAN. vSphere Zone provide a way to create high-available TKG cluster. If you are provisioning a TKG cluster

across vSphere Zones, for multiple vSAN clusters, we can deploy Redis with replication and set FTT=0 for

vSAN, so the data will be protected by Redis itself.

▪ Enable vSAN Trim/Unmap to allow space reclamation for persistent volumes.

• Redis Enterprise Software for Kubernetes:

▪ It is recommended to deploy a Redis Enterprise Cluster with Redis Enterprise Operator, the spec should

include a persistentSpec section. Persistence storage for snapshot and AOF files is a requirement for

production deployments. We recommend that you use the flash-based storage for the persistent volume.

▪ In a production environment, you must have enough resources to handle the load on the database and

recover it from failures:

i. At least three nodes are required to support a reliable, high available deployment that handles

process failure and node failure. And it must be an odd number of nodes.

ii. Redis Enterprise Software can run multiple Redis processes or shards on the same core without

significant performance degradation. It is recommended to configure at least eight cores, 30GB

RAM per node. Make sure the utilized CPU load of the cluster nodes is under 80% of the CPU, 30%

of the RAM is available on each node at any given time.

iii. It is recommended to run over 10Gb interface network used for processing application requests,

inter-cluster communication, and storage access.

▪ Database clustering allows spread the load over multiple servers. When the dataset is large enough (more

than 25GB) or performing CPU-intensive operations, it is recommended to enable clustering to create

multiple shards of the database and spread the requests and load across nodes.

https://www.vmware.com/techpapers/2021/vsphere-tanzu-kubernetes-perf.html

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

▪ The location of primary and replica shards on the cluster nodes can affect the database and node

performance. The shard placement policy helps to maintain optimal performance and resiliency:

i. Dense shard placement policy is recommended for Redis on RAM databases to optimize memory

resources.

ii. Sparse shard placement policy is recommended for Redis on Flash databases to optimize disk

resources.

▪ It is recommended that all active-active databases use replication for the best inter-cluster synchronization

performance. In addition, you can enable replica HA to ensure that the replica shards are high available for

this synchronization.

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

Conclusion

Being a successful open source in-memory data structure store, Redis is commonly used as a database, cache, and message

broker. Developers use Redis for its versatility and simplicity. Low cognitive load makes development fast and efficiency. Redis

is especially popular on cloud native platforms to achieve portability, scalability, and monitoring check.

Redis Enterprise Software integrates seamlessly on Tanzu Kubernetes Grid. This solution validates building and running real-

time Redis workloads on Tanzu Kubernetes Grid, including solution deployment, performance validation, Redis connecting with

Kafka use case and Redis high availability scenario. IT administrators can enable fast application deployment, achieve decent

performance, ensure high availability governance, and lower TCO expenditure via this solution.

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

Additional Resources

For more information about Redis Enterprise Software and VMware Tanzu Kubernetes Grid, you can explore the following
resources:

• VMware vSphere

• VMware vSAN

• VMware Tanzu Kubernetes Grid

• Redis Enterprise Software for Kubernetes

https://www.vmware.com/products/vsphere.html
https://www.vmware.com/products/vsan.html
https://tanzu.vmware.com/kubernetes-grid
https://docs.redis.com/latest/kubernetes/

Running Redis on VMware Tanzu Kubernetes Grid 2

Running Redis on VMware Tanzu Kubernetes Grid 2

About the Author and Contributors

Yimeng Liu, Senior Technical Marketing Manager in the Workload Technical Marketing Team of the Cloud Infrastructure Big

Group, wrote the original version of this paper. The following reviewers also contributed to the paper contents:

• Chen Wei, Director of the Workload Technical Marketing Team in VMware

• Catherine Xu, Senior Manager of the Workload Technical Marketing Team in VMware

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com.

Copyright © 2023 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at
vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be
trademarks of their respective companies. Item No: vmw-wp-tech-temp-word-102-proof 5/19

Running Redis on VMware Tanzu Kubernetes Grid 2

