

Knative Fundamentals
Selections from Knative in Action by Jacques Chester

Manning Author Picks

 Copyright 2020 Manning Publications
To pre-order or learn more about these books go to www.manning.com

http://www.manning.com/

For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: Erin Twohey, corp-sales@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Leslie Haimes

ISBN: 9781617298516
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 24 23 22 21 20 19

http://www.manning.com

iii

 contents
1 Introduction 1

1.1 What is Knative? 2
1.2 So what? 3
1.3 Where Knative shines 4
1.4 It’s a hit 7
1.5 What’s in the Knative box? 13
1.6 Keeping things under control 15
1.7 Are you ready? 20

2 Introducing Knative Serving 23
2.1 A walkthrough 24
2.2 Serving Components 30

3 Configurations and Revisions 38
3.1 Those who cannot remember the past 

are condemned to redeploy it 39
3.2 The bedtime story version of the 

history of deployment as a concept 40
3.3 The anatomy of Configurations 46
3.4 The anatomy of Revisions 52

index 79

Introduction
One of my north stars is the Onsi Haiku Test:

Here is my source code.
Run it on the cloud for me.
I do not care how.

This is a radical notion of how software can best be developed, deployed,
upgraded, observed, managed, and improved. It must be, because so often it
emerges long after we’ve tried everything else first. It implies:

 That a fast, reliable path to production is a shared goal for everyone.
 That a crisp contractual boundary exists between folks who provide plat-

forms and folks whose work will consume the platform.
 That building software that handles other software is, for most developers,

not the most urgent, most valuable work they could be doing.

Kubernetes, by itself, doesn’t pass the Onsi Haiku Test. The boundary between
development and operation is unclear. Developers can’t walk up to a vanilla Kuber-
netes cluster, hand it raw source code, and get all the basic amenities of routing,
logging, service injection, and so on. Kubernetes gives you a rich toolbox for solv-
ing the haiku test in your own particular way. But a toolbox isn’t a machine. It’s a
toolbox.

 This book isn’t about Kubernetes; it’s about Knative. Knative builds on the tool-
box Kubernetes provides, but also sets out to achieve a level of consistency, simplic-
1

2 CHAPTER 1 Introduction
ity, and ease of use that brings Kubernetes much closer to meeting the Onsi Haiku
Test’s high standard. Knative is a machine.

 While it has something to offer many different professional specialties, Knative is
primarily focused on the needs and pains of developers, to elevate them to the heights
of “I do not care how”. Kubernetes is amazing, but it never strongly demarcated what’s
meant to be changed or managed by whom. That’s a strength: you can do anything!
And a weakness: you could, and did, do anything! Knative provides crisp abstractions
that, by design, don’t refer to the grungy physical business of nodes and containers
and VMs. I’ll also focus on developers in this book, referring to or explaining Kuber-
netes only when necessary to understand Knative.

1.1 What is Knative?
There are several ways to answer this question.

 The purpose of Knative is to provide a simple, consistent layer over Kubernetes
that solves common problems of deploying software, connecting disparate systems
together, upgrading software, observing software, routing traffic, and scaling automa-
tically. This layer creates a firmer boundary between the developer and the platform,
allowing the developer to concentrate of the software they are directly responsible for.

 The major subprojects of Knative are Serving and Eventing.1 Serving is responsible
for deployment, upgrade, routing, and scaling. Eventing is responsible for connecting
disparate systems. Both Serving and Eventing have observability as concerns. Dividing
responsibilities this way allows each to be developed more independently and rapidly
by the Knative community.

 The software artifacts of Knative are a collection of software processes, packaged
into containers that run on a Kubernetes cluster. In addition, Knative installs addi-
tional customizations into Kubernetes itself to achieve its ends. This is true of both
Serving and Eventing, each of which installs its own components and customizations.
While this may interest a platform engineer or platform operator, it shouldn’t matter
to developer. You should only care that it’s installed, not where or how.

 The API or surface area of Knative is primarily YAML documents that declaratively
convey your intention as a developer. These are “CRDs”, Custom Resource Docu-
ments. They are, essentially, plugins or extensions for Kubernetes that look and feel
like vanilla Kubernetes does.

 You can also work in a more imperative style using the kn CLI, which is useful for
tinkering and rapid iteration. I’ll show both of these approaches throughout the book.

 Let’s take a quick motivational tour of Knative’s capabilities.

1 If you look at early talks and blog posts about Knative, you’ll see references to a third subproject, “Build”. Build
has since evolved and spun out into Tekton, an independent project. This decision moved Knative away from
the Onsi Haiku Test, but it also resolved a number of architectural tensions in Serving. Overall, it was the right
decision, but leaves you with the responsibility of deciding how to convert source code into containers. Happily,
there are many ways to do this, and I’ll introduce several later in the book.

3So what?
1.1.1 Deploying, upgrading, and routing

Deployment has evolved: what used to be a process of manually promoting software
artifacts through environments (with scheduled downtime, 200 people on a bridge
call all weekend …) became continuous delivery and blue-green deploys.

 But should deployment be all or nothing? Knative enables progressive delivery:
instead of requests arriving at a production system, which is entirely one version of the
software, they arrive at a system where multiple versions can be running together with
traffic being split between them. Deployments can proceed at the granularity of
requests, rather than instances. ”Send 10% of traffic to v2” is different from “10% of
instances are v2”.

1.1.2 Autoscaling

Sometimes there is no traffic. Sometimes there’s too much traffic. One of these is waste-
ful, the other is stressful. Knative is ready with the Knative Pod Autoscaler, a request-
centric autoscaler that’s deeply integrated with Knative’s routing, buffering, and met-
rics components. The autoscaler can’t solve all your problems, but it will solve enough
that you can focus on more important problems.

1.1.3 Eventing

Easy management of HTTP requests will take you a long way, but not everything looks
like a POST. Sometimes we want to react to events instead of responding to requests.
Events might come from your software or external services, but they may arrive with-
out anyone requesting something. That’s where Knative Eventing for events comes into
focus. It enables you to compose small pieces of software into flexible processing pipe-
lines, connected through events. You can even prepare to process things that don’t
even exist yet (really).

1.2 So what?
I know your secret: somewhere in your repo is deploy.sh. It’s a grungy bash script that
does grep-and-sed and calls kubectl a bunch of times and has some sleeps, and
maybe you got ambitious so there’s a wget floating around in it too. You wrote it in a
hurry and of course, of course, of course you’re going to do a better job, but right now
you’re busy working getting this thing done before Q3, and you need to implement
floozlebit support and refactor the twizzleflorp and deploy.sh works well enough.

 But this is always true for everything; there’s never enough time. Why, really, didn’t
you make the change yet?2 Easy: it’s too hard. Too much work when you already have
enough.

 Kubernetes itself is great, once you set it up. It absolutely shines at its core purpose
in life: reconcile the differences between the desired state of the system and the actual
state of the system on a continuous basis. If all you ever needed was to deploy your sys-

2 Those of you in the class who’re pointing at their Spinnaker instances can lower your hands.

4 CHAPTER 1 Introduction
tem once and let it run forever without changing it, then you’re good to go and lucky
you. The rest of us, however, are on the hedonic treadmill. We have desired worlds
that change. We ship bugs that need to be fixed, our users think of new features they
want, and our competitors make us scramble to answer new services.

 And that’s how you wound up with the script. And doing a better job of deploy-
ment doesn’t seem urgent. After all: it works, right? Yes . . . if and only if your goal is to
be afraid to upgrade anything or to have umpteen slightly different versions of
deploy.sh floating around company repos or to write your own CD system without
intending to. Why bother? Let Knative toil for you instead.

 I know two of your secrets. Your code knows a lot about all your other code. The
login service knows about the user service and the are-you-a-robot? service. It tells
them what it wants, and it waits for their answer. This is the imperative style, and with
it we as a profession have built incredible monuments to human genius. But we’ve
also built incredible bowls of spaghetti and warm compost.

 It would be nice to decouple your services a bit, so that software responds to
reports of stuff happening, and, in turn, reports stuff that it did. This isn’t a novel con-
cept: the idea of software connected through pipes of events or data has sailed under
various flags and in various fleets for decades now. There are deep and important and
profound differences between all of these historical schools of thought. I will, in an
act of mercy, spare you any meaningful discussion of them. Because before you learn
how to chisel apart the monolith, you need a chisel and a hammer.

1.3 Where Knative shines
Knative’s focus on event-driven, progressively delivered, autoscaling architectures
lends itself to particular sweet spots.

1.3.1 Workloads with unpredictable, latency-insensitive demand

Variability is a fact of life: nothing repeats perfectly. Nothing can be perfectly pre-
dicted or optimized. Many workloads face demand variability: it isn’t always clear, from
moment to moment, what demand to expect.

 The Law of Variability Buffering says that you can deal with demand variability by
buffering it in one of three ways:

1 With inventory: Something you produced earlier and have at hand. For exam-
ple, caching.

2 With capacity: Unused reserve capacity that can absorb more demand without
meaningful effect. For example, idle instances.

3 With time: By making the demand wait longer.

These are all costly. Inventory costs money to hold (RAM and disk space isn’t free),
capacity costs money to reserve (an idle CPU still uses electricity) and famously, “time
is money” and nobody likes to wait.

5Where Knative shines
NOTE Inventory, capacity, and time are the only options for buffering vari-
ability. It’s basic calculus. Inventory is an integral, a sum of previous capacity
utilization and demand. Capacity is a derivative, a rate of change of inventory.
And time is time. You can rearrange the terms, and you can change their val-
ues, but you can’t escape the boundaries of mathematics. The only alternative
is to reduce variability so that you need less buffering in the first place.

Knative’s default strategy for buffering is time. If demand shows up but capacity is low
or even zero, Knative’s autoscaler will react by raising capacity and holding your
request until it can be served. That’s well and good, but it takes time to bring capacity
online. This is the famous “cold start” problem.

 Does this matter? It depends on the nature of the demand. If the demand is
latency-sensitive, then maybe scaling to zero isn’t for you. You can tell Knative to keep
a minimum number of instances alive (no more pinging your function). But if it’s a
batch job or background process that can wait a while to kick off, buffering by time is
sensible and efficient. Let that thing drop to zero. Spend the savings on ice cream.

 Regardless of sensitivity to latency, the other consideration is: how predictable is
the demand? Highly variable demands require larger buffers. Either you hold more
inventory, or more reserve capacity, or make folks wait longer. You have no alterna-
tives. If you don’t know how you want to trade these off, the autoscaler can relieves
you of dealing with common cases (see figure 1.1).

One thing Knative can’t do much to save you from is supply variability. That is, it can’t
make variability due to your software vanish, or magic away variability due to upstream
systems you rely on. How long your software takes to become live and how responsive
it is remains largely in your court. Upstream variability might be in your court, but
you’ll still be affected by it.

1.3.2 Stitching together events from multiple sources

Sometimes you have a square peg, a round hole, and a deadline. Knative won’t shave
the peg or hammer it into the hole, but Knative Eventing lets you glue things together

Figure 1.1 Knative’s sweet spots in terms of
latency sensitivity and demand predictability.

6 CHAPTER 1 Introduction
so that you can achieve your original purpose. By design, Eventing is meant to receive
events from heterogenous sources and convey them to heterogenous consumers.
Webhook from GitHub? Yes. Pub/Sub message from Google? Yes. File uploaded? Yes.

 A combination of these? Also yes, which is the interesting part. Relatively small,
consistent, standards-based interfaces allow many combinations of elements. To this,
Knative adds simple abstractions to enable you to go from dabs of glue to relatively
sophisticated event flows. As long as an event or message can be expressed as a
CloudEvent, which is pretty much anything ever, Knative Eventing can be used to do
something smart with it.

 The flipside of generality is that it can’t be everything to everyone. Should you use
it for CI/CD (continuous implementation/continuous deployment)? Maybe. For
streaming data analysis? Perhaps. Business workflow processing? Reply hazy, try again.

 The key is that for all of these, there are existing, more specialized tools that might
be a better fit. For example, you can build a MapReduce pattern using Knative. But
realistically, you won’t get anywhere near the kind of performance and scale of a dedi-
cated MapReduce system. You can build CI/CD with Knative, but now you have to do
homework to implement all the inflows and outflows (see figure 1.2).

Where Knative can shine is when you want to connect a variety of tools and systems in
simple ways, in small increments. We all do this in our work, but typically it gets
jammed into whatever system that happens to have room for boarders. And so our
web apps sprout obscure endpoints or our CI/CD accumulates increasingly hairy
Bash scripts. Knative lets us pull these out into the open, so that they can be more eas-
ily tested, monitored, and reused.

1.3.3 Decomposing monoliths in small increments

Microservices describes a family of powerful architectural patterns. But getting to a
microservices architecture isn’t easy, because most existing systems aren’t designed for
it. For better or worse, they’re monoliths.

Figure 1.2 Knative’s sweet spots in terms of event
heterogeneity and implementation specialization.

7It’s a hit
 Easy, you say: use the strangler pattern. Add microservices incrementally, route
requests to them so that the original code path goes cold, repeat until you’re done.

 Knative makes this easier in two ways. The first is that it’s good at the routing thing.
The concept of routing portions of traffic is key to its design. This matters because the
strangler pattern tends to falter once you’ve strangled the less-scary bits (look boss, we
broke out the cat GIF subsystem!) and move onto the parts where the big money lives.
Suddenly it’s a bit scarier, because (1) a cutover is a cutover, (2) a big-bang cutover is a
bet-your-job event, and (3) Knative makes it easier to stop believing in (1) and (2)
(see figure 1.3).

The second way Knative makes strangulation easier is that you can deploy small units
easily. Knative has a deep design assumption that you’ll have a bunch of little func-
tions that will come and go. A function is less to recreate than a service. The smaller
you can start, the easier it is to start.

1.4 It’s a hit
Up to now, I’ve promised a lot: easier deployments, easier event systems, incremental
development, Martian unicorns—the usual stuff that everyone promises to develo-
pers. But I haven’t given you any concrete details. To support my pitch that we can
start in small increments, I’ll begin with one of the oldest, simplest examples of the
dynamic web and show how Knative makes it faster, smarter, and easier.

 Remember hit counters (see figure 1.4)?

I sure do. The first time I saw one, it blew my mind. It changed! By itself! Magic!

Figure 1.3 Knative’s sweet spots in terms
of resisting temptation to grow a monolith.

Figure 1.4 The late 1990s
were truly a golden era.

8 CHAPTER 1 Introduction
 Not magic, of course, it was a CGI program, probably Perl.3 CGI is one of the spiri-
tual parents of Knative4, so in its honor, we’re going to make a hit counter for MY
AWESOME HOMEPAGE, as shown in the following listing.

<html>
<body>
 <style>body { font-family: “awesomefont” }</style>
 <center>
 MY AWESOME HOMEPAGE

 </center>
</body>
</html>

First, let’s talk about the basic flow of requests and responses. A visitor to the home-
page will GET an HTML document from the web server. The document contains style
and, most importantly, the hit counter, as shown in figure 1.5.

Figure 1.5 The flow of
requests and responses.

Specifically:

1 The browser issues a GET request for the homepage.
2 The homepage service returns the HTML of the homepage.
3 The browser finds an img tag for hits.png. It issues a GET for hits.png..
4 A file bucket returns hits.png

In the old world, all of the processing needed to generate the hit counter would block
the webserver response. You’d submit your request, the web server would bestir the
elder gods of Cämelbuk and then /CGI-BIN/hitctr.pl would render the image.
It might take a second or two, but nobody could tell, unless they were using one of
those blazing 28.8k modems.

3 OK, using ImageMagick, but not magic magic.
4 Two others are inetd and stored procedures.

Listing 1.1 The awesome homepage HTML

9It’s a hit
 But now everyone is impatient: spending a few second to render an image that
could otherwise be served from a fast data path isn’t going to be acceptable. Instead
we’ll break that responsibility out and do it asynchronously. That way, the web server
can immediately respond with HTML and leave the creation of hit counter images to
something else.

 How will the web server signal that intention? It won’t. Instead it will signal that a
hit occurred. Remember: the web server wants to serve web pages, not orchestrate
image rendering. Instead of blocking, it emits a new_hit CloudEvent.

 Emits to where?
 To a Broker, a central meeting point for systems in Knative Eventing. The Broker

has no particular interest in the new_hit event, it merely receives and forwards events.
The exact details of who gets what is defined with Triggers. Each Trigger represents
an interest in a set of events and where to forward them to (see figure 1.6). When
events arrive at the Broker, it will apply each Trigger’s filter and, if it matches, for-
ward the event to the subscriber:

It’s Triggers that enable the incremental composition of event flows. The web server
doesn’t know where new_hit will wind up and doesn’t care. Given our new_hit, we
can start to tally up the count of hits. Already, we’re ahead of the 1999 status quo: we
could take our original Perl script and have it react to the new_hit event instead of
blocking the main web response.

 But since we’re here, let’s go a step further. After all: is rendering images the actual
proper concern of a tallying service? When I perform an SQL UPDATE I don’t get back

Figure 1.6 Broker applying Triggers to CloudEvents.

10 CHAPTER 1 Introduction
JPEG files. Instead I will have the tally service consume the new_hit and emit a new
count, which can then wing its way to other subscribers.

 Putting it together in figure 1.7:

1 The homepage service emits a new_hit event.
2 A Trigger matches new_hit, so the Broker forwards it to hit counter.
3 hit counter updates its internal counter, then emits a hits event with the

value of that counter..
4 Another Trigger matches for hits, so the Broker forwards it to image renderer
5 The image renderer renders a new image and replaces hits.png in the file

bucket.

And now, if the visitor reloads their browser, they’ll see that the hit counter has incre-
mented.

1.4.1 Trouble in paradise

Except, maybe, they don’t. To see why, let’s put the diagrams together in figure 1.8:
Note that I’m showing two sets of numbers, one for web request/response and
another for the event flow. This illuminates the important point: the web flow is syn-
chronous, the event flow is asynchronous. You knew that, but I handwaved away the con-
sequences, and now I need to slap my wrist. The distinction matters.

 Because the event flow is asynchronous (see figure 1.9), there’s no guarantee that
hits.png will have been updated before the next visitor arrives. I might see 0001336,
reload and then see 0001336 again.5 And that’s not all: where one visitor might see no
change, another visitor might observe that the hit counter jumps forward, because later
renderings can overwrite earlier renderings before they were served. And that’s not all!
An observer might see the count go backward, because the rendering that increased the

5 Assuming that I used cache-disabling headers to force the browser to refetch each time.

Figure 1.7 The flow of events.

11It’s a hit
Figure 1.8 Combining the flows in one diagram.

number to 0001338 might have finished before the rendering for 0001337 did. Or it
may be that the events arrived out of order. Or some events never even arrived.

 I’m not done. Remember how I said that hit counter was keeping a tally of hits?
I didn’t say where. If it’s just keeping a value in memory, then you have new problems.
For example, if Knative’s autoscaler decides that things are too quiet lately, it will

Figure 1.9 Synchronous flows can be inefficient. Asynchronous workloads can be inexplicable.

12 CHAPTER 1 Introduction
reduce that number of hit counters to zero and pow, your tally is gone. Next time it
spins up, your hit count will be reset to zero. But if you have more than one hit
counter, they’re keeping separate tallies. The exact hit count image at any moment
will depend on traffic, but not in the way you might have expected.

 I’m describing stateless systems, of course. The answer is to keep state in a shared
location, separately from the logic that operates on it. For example, each hit counter
might be using Redis to increment a common value. Or you might get super fancy6

and have each instance listen for hits events. If the incoming event is a higher tally,
jump to that value and hope you’re not participating in an infinite event loop.

 You’ve probably noticed that my focus has been on an already-deployed system.
That’s the bad news. The good news is that you can fix a key bug I introduced in the
previous section. Can you guess what it is?

 Correct. The font sucks.
 You quickly learn that Knative prizes immutability. This has many implications. For

now, it means that we can’t SSH into homepage, open vi, and do it live (see figure
1.10).7 But it does raise the question of how changes get moved from your workstation
to the cloud.

6 Please don’t.
7 And I do not, for the purposes of law, recall ever doing so myself.

Figure 1.10 Updating the homepage.

13What’s in the Knative box?
 Knative encapsulates “run the thing” and “change the thing” into Services.8 When
the Service is changed, Knative acts to bring the world into sync with the change.

1 A user who arrives before the update sees the existing HTML, as served by
homepage v1.

2 The developer uses kn to update the Service.
3 Knative starts homepage v2.
4 homepage v2 passes its readiness check.
5 Knative stops homepage v1.
6 A second user arriving after the update sees a more professional font.

 This blue/green deployment behavior is Knative’s default. When updating Services,
it ensures that no traffic is lost and that load is only switched when it’s safe to do so.

1.5 What’s in the Knative box?
Let’s break this down into subprojects: Serving and Eventing.

1.5.1 Serving

Serving is the first and most well-known part of Knative. It encompasses the logic
needed to run your software, manage request traffic, keep your software running
while you need it, and stop it running when you don’t need it.

 As a developer, Knative gives you three basic types of document you can use to
express your desires: Configuration, Revision, and Route.

 Configuration is your statement of what your running system should look like. You
provide details about the desired container image, environment variables, and the
like. Knative converts this information into lower-level Kubernetes concepts such as
deployments. In fact, those of you with Kubernetes familiarity might wonder what
Knative adds. After all, you can create and submit a Deployment yourself; no need to
use another component for that.

 Which takes us to Revisions. These are snapshots of a Configuration. Each time that
you change a Configuration, Knative first creates a Revision and in fact, it’s the Revi-
sion that’s converted into lower-level primitives.

 But this might still seem like overhead. Why bother with this versioning scheme in
Knative, when you have Git? Because blue/green deployment is not the only option.
In fact, Knative allows you to create nuanced rules about traffic to multiple Revisions.

 For example, when I deployed homepage v2, the deployment was all or nothing.
But suppose I was worried that changing fonts would affect how long people stay on
my page (that is, an A/B test). If I perform an all-or-nothing update, I’ll get lots of
data for the before and after. But there may be a number of confounding factors, such
as time-of-day effects. Without running both versions side by side, I can’t control for
those variables.

8 Not to be confused with Kubernetes Services. More on that later.

14 CHAPTER 1 Introduction
 But Knative can divvy up traffic to Revisions by percentage. I might decide to send
10% of my traffic to v2 and 90% of my traffic to v1. If the new font turns out to be
worse for users, then I can roll it back easily without much fuss. If instead it was a tri-
umph, I can quickly roll forward, directing 100% of traffic to v2.

 It’s this ability to selectively target traffic that makes Revisions a necessity. In vanilla
Kubernetes, I can roll forward and I can roll back, but I can’t do so with traffic, I can
only do it with instances of the service. This has important architectural and operational
consequences, which I’ll dive into later in the book.

 Perhaps you wondered what happened to the Services I was talking about in the
walkthrough. Well, these are essentially a one-stop shop for all things serving. Each
service combines a Configuration and a Route. This compounding makes common
cases easier, because everything you need to know is in one place.

 But these concepts aren’t necessarily what get listed on the marketing flyer. Many
of you have come to hear about autoscaling, including scale-to-zero. For many folks,
it’s the ability for the platform to scale all the way to zero that captures their imagina-
tion: no more wasting money on instances that are mostly idle. And similarly, the abil-
ity to scale up: no more getting paged at absurd o’clock in the morning in New York
because something huge happened in Sydney (or vice versa). Instead you delegate the
business of balancing demand and supply to Knative. Sometimes you’ll want to under-
stand what the heck it’s doing, so I’ll spend time delving into the surprisingly difficult
world of autoscaling.

1.5.2 Eventing

Eventing is the second, less-well-known part of Knative. It provides ways to express
connections between different pieces of software through events. In practical terms,
“this is my software” is simpler to describe than “here is how all my software connects
together”. Eventing consequently has a larger surface area, with more document
types, than serving does.

 Earlier in the chapter you learned that in the middle of the Eventing world is
where Triggers and Brokers live. The trigger exists to map from an event filter to a
target. The Broker exists to manage the flow of events based on Triggers.

 But that’s the headline description, light on detail. For example, how does a
CloudEvent actually get into the Broker? It turns out, there are multiple possibilities.
The most powerful and idiomatic of these is a Source. These represent configuration
information about a kind of emitter of events and a Broker to which they should be
sent. A Source can be more or less anything: GitHub webhooks, direct HTTP requests,
you name it. As long as it emits CloudEvents to a Broker, it can be a source.

 What kinds of events are there? That’s where the event registry comes along, pro-
viding a catalogue of EventTypes. At a command line you can quickly discover what
events you can react to.

15Keeping things under control
 Great! You’re probably already composing event-processing graphs in your head,
and it won’t be long before you get tired of writing Trigger upon Trigger. It will be
handy if you had a simple way to do things in order. This is what Sequences can express
for you: that A runs before B. Or maybe you want to do more than one thing at a time.
That’s what Parallel does, allowing you to express that A and B can run independently.

 Analogous to how Serving provides the convenience of Service, Sequence and
Parallel constructed from the same concepts that you can use directly. They’re a con-
venience, not a constraint. They’ll enable you assemble event flows with much less
YAML than hand-wiring equivalent Triggers would.

 Beneath these smooth surfaces lies a fair amount of plumbing: Channels, Sub
scribers, Reply, Addressable and Callable. Right now, these aren’t important. We’ll
get to them in a due time. Meanwhile you can do most of what you need to do with a
mix of Source, Trigger, Broker, Sequence, and Parallel.

1.5.3 Serving and eventing

By design, you don’t need Serving to use Eventing and you don’t need Eventing to use
Serving. But they do mesh pretty well together. For example, if you have long process-
ing pipelines, it’s nice if idle instances don’t sit around burning money waiting on
upstream work to finish. Or, if there’s a bottleneck, it’s helpful if that part of the pipe-
line is scaled up. That’s Eventing gaining a superpower from serving.

 And it works the other way. Serving’s focus is on request/reply designs, the simple,
robust but sometimes slow blocking approach. By itself this will favor adding function-
ality to existing services instead of creating new ones. Blocking is still blocking but
blocking on threads is faster than blocking on HTTP. You can easily drift back from
microservices to monoliths in costume.

 Eventing relieves a bit of that design pressure (see figure 1.11). You can now off-
load work that doesn’t need to block, or which should react to events instead of fol-
lowing commands. Encouraging smaller units of logic and behavior allows Serving to
really shine: autoscaling the GigantoServ™ is better than nothing. But it’s wasteful to
burn 100Gb of RAM on a system with 300 endpoints when only two of them are seeing
any kind of traffic surge.

 In the hit counter system discussed previously, I put both Serving and Eventing to
work. Serving handles the business of homepage, hit counter, and image renderer.
Eventing handles the Broker so that Services will receive and emit events without direct
coordination. In this book I’ll be describing them individually, so that I can go into some
depth. But they’re intended to work well together. Ultimately, I want you to do that.

1.6 Keeping things under control
“Knative” is a clever name. First, everyone gets to practice pronouncing it a few times
(“KAY-naytiv”). From personal experience, I know that if folks are struggling to pro-
nounce your name, they’ll really concentrate on it.

16 CHAPTER 1 Introduction
Second, it encompasses some of the design vision. Knative is native to Kubernetes
both in spirit and implementation. In a kind of judo throw, it uses the extensibility of
Kubernetes to conceal the complexity of Kubernetes. But every throw needs a little
leverage to make it work. To give you that leverage, I need to step back a bit from Kna-
tive and give you a basic level of familiarity with a core organizing concept in Kuberne-
tes and Knative: the feedback control loop.

1.6.1 Loops

As a profession, we use terms such as “feedback loop” pretty loosely. Strictly, feedback
loops are any circular causality that amplifies or dampens itself. (I use the word
“strictly” informally).

 For example: compound interest is a feedback loop. No humans are involved, only
computers multiplying numbers. But the amount of interest paid is a function of the
accumulated principal, which is itself a function of previous interest paid. After each
period the effect is amplified. Each payment feeds back into the system.

 Or consider an avalanche after heavy snow. A small amount of snow slips further
down, making the next spot down slightly heavier. More snow slips further down, mak-
ing the next spot even heavier again. Within seconds, what starts as a few grams of
attractive light fluff transforms into thousands of tons of mindless destruction.

 The nature of pure feedback loops is that they require no intelligence or logic.
They can be composed of pure causality. This is why both compound interest and an
avalanche are of the same species. Whether the structure of the system was set by
humans or nature is unimportant to how it will behave.

Figure 1.11 Serving runs the services, and Eventing wires them together.

17Keeping things under control
 We often assume that intelligence is involved in feedback loops, because pure circu-
lar causality is rarely apprehended and understood: purely damping loops disappear
and purely amplifying loops fly apart. At a human level, the universe appears to be
composed of linear causality, but beneath most of it lies a seething world of loops
shoving and pushing each other around an equilibrium.

 Because purely causal circularity is rarely apprehended, we attribute intelligence
to those that we do observe, because in our experience humans are necessary to cre-
ate a special case: control loops.9

 Control loops are a special case because they add a controller to the loop (see fig-
ure 1.12). A controller observes the actual world, compares it to some reference of the
desired world, then acts upon the actual world to make it look more like the desired
world. This simple description disguises centuries of work and generations of engi-
neering students being unceremoniously doused with calculus. But, at its heart, the
idea of a control loops is simple. Make what we have look more like what we want.

The key is that the loop runs repeatedly. The Controller regularly takes in information
about the desired and actual worlds, comparing them, then deciding whether to take
actions in the actual world. The repeated observations of the world are “fed back” to
the controller, which is why this is a “feedback controller”.10

9 Attributing intelligence to causality is human. Lightning isn’t due to angry super-beings, but if you’ve ever
been near a lightning strike you can understand why “static electricity” wasn’t the first thing people thought
of to explain such a phenomenon.

10 When you design systems without the loop, the controller is using “feed forward”. The designer has often
taken advantage of a property of the controlled system to make feedback unnecessary. For example, you don’t
see many feedback controllers governing the position of concrete slabs, because these will typically stay put
on their own. Feed forward control is a useful, legitimate design technique for many kinds of systems. For
highly dynamic systems like software, though, feedback control is well suited to maintaining an amount of sta-
bility and reliability.

Figure 1.12 The basic
structure of a control loop.

18 CHAPTER 1 Introduction
From my description so far, it’s easy to form the impression that control loops are all
about counteracting unwanted changes in the actual world. That the desired world is
immutable, fixed, so that bursts of activity are only signaled by the controller when the
actual world shifts out of alignment with the desired world.11

 This isn’t true. The Controller doesn’t “see” a change in the actual world in con-
trast to an immutable desired world. What it sees is a difference between one input
and another input.12 On each pass around the loop the controller sees the two inputs
afresh, as if for the first time.13 It doesn’t need to know that the actual changed since
“last time”. It doesn’t know that the desired changed since “last time”. It doesn’t care.
It knows that they aren’t the same.

 This leads to a simple conclusion: the controller may act due to changes in either of
the actual world or the desired world. Because it’s reacting to the emergence of the
difference, not to the worlds per se. Something or someone outside the control loop
can change the desired world in order to prompt activity (see figure 1.13).

Controllers vs controllers
“Controller”, in this context, isn’t referring to the Model-View-Controller (MVC) pattern
you might recognize from software frameworks. Trygve Reenskaug is typically credited
with inventing the MVC pattern, initially using the name “Editor” — in a different uni-
verse we’d be talking about the MVE pattern. The name came about because “After
long discussions, particularly with Adele Goldberg, we ended with the terms Model-
View-Controller”.

The Controller, or Editor, was meant to “bridge the gap between the human user’s men-
tal model and the digital model that exists in the computer. The ideal MVC solution sup-
ports the user illusion of seeing and manipulating the domain information directly.”

This isn’t what Kubernetes, and by extension Knative, mean by “Controller”. Instead
the meaning is taken by analogy from control theory, which deals with how dynamic
systems can be made to behave more predictably and reliably. It’s widely applied by
engineers in fields such as electrical and electronic systems, aerodynamics, chemi-
cal plant design, manufacturing systems, mining, refineries, and many others.

You’ll avoid confusion by pretending you’ve never heard of MVC.

11 This, in turn, leads to the question of “what is the desired world?”. This is the kind of annoying open-ended
question that led to Socrates being fairly permanently voted off the island by his fellow Athenians. Using Soc-
rates as a sockpuppet, Plato argued that there are perfect ideas, perfect forms, independent of mere matter.
He’d be somewhat at home with the mistaken interpretation that control loops are mostly about a controller
(he’d call it a Guardian) continuously striving to return to The Good.

12 That difference isn’t commutative, so the order of inputs still matters. What comes through the “desired” door
does need to be the desired state and what comes through “actual” needs to be the actual state.

13 This isn’t universally true of controllers in control theory: they can have many kinds of “memory” to carry
information forward in time. In the most common approach to control theory, what I’m describing is a purely
proportional controller. Adding averaging over previous states would add integral control. Adjusting the
forcefulness of actions based on how quickly the two worlds are diverging would add derivative control.

19Keeping things under control
1.6.2 Loops within loops

Who changes the desired world? Most of us assume that a human will do it at first.
Something like push YAML to update the desired world, knock off, and go home.

 This will work, but it has at least one problem. The actual world is complex. Often
obnoxiously so. As a profession we’ve tackled this complexity using abstraction (name
things to banish their complexity) and composition (combine things to amplify their
power). If I could not use abstraction and composition, if I had to define every detail
for every part of my world, then I would (1) send many worlds over the wire and (2)
I would need a very complex controller indeed. About as complex as the world itself.14

 In the industrial world this is dealt with by “hierarchical control”. That is, the
desired world of one controller is modified by the actions of a supervising controller.
For example, an industrial kiln will have controllers for managing individual gas burn-
ers, to ensure that they burn the right amount of flammable gas. What’s the right
amount? That’s decided by a supervising controller which is interested in controlling
the temperature of the kiln. Instead of a controller which runs all the way from “right
temperature” to “right gas flow for hundreds of burners”, we have two feedback con-
trol loops that are nested (see figure 1.14).

 This should be recognizable as architectural layering according to the Single
Responsibility Principle. Temperature control is a different concern from gas flow
control. And so it is with software systems: the business of shipping photons over fiber
optic cable is distinct from the business of forming frames which is different from
sending packets, which doesn’t at all resemble a GET request. Developing optical con-
trol algorithms is not a precondition for using JavaScript. People might think that’s a
pity, but that’s beside my point.

14 Ross Ashby, an early cyberneticist, called this the “Law of Requisite Variety”: any perfect controller of a system
must be as complex as the system. Of course, “perfect” is impossible in practice and in fact, we don’t need it
(do you really think the kiln controller should include a weather forecaster and an ability to tell if the site
foreperson is angry today?). The tactic of breaking control problems into hierarchies makes each level much
more tractable to solve to a satisfactory standard.

Figure 1.13 The internal structure of a controller.

20 CHAPTER 1 Introduction
Ultimately this hierarchy of feedback control loops reaches up to you. You have a desired
world of “software that achieves such-and-such purpose”. Your desired world changes,
creating a cascade of other worlds that change. Soon a deployment is setting new targets
for lower-level controllers to react to. Most of the time we’re focused solely on the actions
we’re taking, but we (hopefully) don’t act like pure noise. We’re purposeful.

 Kubernetes explicitly models its architecture on feedback control loops and
provides infrastructure to enable the easy development of a variety of controllers
for different purposes. Kubernetes then uses hierarchical control to layer responsi-
bilities: pods can be supervised by ReplicaSets which are supervised by deployments
(see figure 1.15).

 Knative Serving builds on this infrastructure and adopts its norms. It presents the
surface interface of Services, Configurations, Revisions and Routes. These are han-
dled by first-level controllers, which break them into targets for other controllers, and
so on until code lands on a VM you don’t care about and runs code that you care
about very much. Your role is to be the highest-level controller in the hierarchy. Kna-
tive is meant to see to the rest.

1.7 Are you ready?
Before we dive in, let me tell you my assumptions about you. The first is that you’ve
done some programming and can get the gist of examples in Java or Go. The second
is that you’re comfortable with installing and using CLI tools. Basically, I’m assuming
that you’re in Knative’s primary audience: developers.

Figure 1.14 A hierarchical kiln controller.

21Are you ready?
 I don’t assume that you know anything about Kubernetes or service meshes. I
don’t assume that you have used a serverless platform before. When I need to intro-
duce necessary information I will, but my goal throughout is that Knative should live
up to its vision of enabling you to ignore Kubernetes altogether.

 From the next chapter, I’ll need you to set up several tools. Most importantly, I’m
guessing that you’ve installed Knative or someone is providing it for you. I’m also
assuming that you’ve installed the kn tool, which I’ll focus on throughout. See the
appendix for an installation guide for Knative and kn.

 If you want to run the samples, you’ll need to have installed Java, Maven and Go.
 Take a moment to set up YAML support in your favorite editor. Certain editor

YAML extensions also include specialized Kubernetes support, which is nice to have
but not essential.
Most of all, I want you to have fun. Grab a drink of your choice, and let’s begin.

Summary
 Knative makes it easier to deploy, update, autoscale, and compose event-driven

software.
 Knative has two major components: Serving and Eventing. Serving is focused

on running software, scaling, and routing. Eventing is focused on event flows.
 The world is filled with feedback loops. Some of these are controlled.

Figure 1.15 Several of the hierarchy of Knative and Kubernetes controllers involved in running
a Service.

22 CHAPTER 1 Introduction
 A controller compares a desired world and an actual world, then decides what’s
necessary to make the actual world resemble the desired world. This process
occurs repeatedly, creating a feedback control loop.

 Controllers can be nested, arranged into hierarchies. Higher controllers adjust
the desired world of lower controllers.

 Control loops are a core architectural principle of Knative.

References
 Humble, J & Farley, D. Continuous Delivery: Reliable Software Releases Through

Build, Test and Deployment Automation.
 Governor, J. “Towards Progressive Delivery”. James Governor’s Monkchips, 6 August

2018. redmonk.com/jgovernor/2018/08/06/towards-progressive-delivery/.
 twitter.com/onsijoe/status/598235841635360768.
 Hopp, W.J. & Spearman, M.L. Factory Physics, 3rd Edition. Page 309.
 Fowler, M. “StranglerFigApplication”, MartinFowler.com, 29 June 2004. martin-

fowler.com/bliki/StranglerFigApplication.html
 Reenskaug, T. MVC Xerox Park 1978-79. heim.ifi.uio.no/~trygver/themes/mvc/

mvc-index.html.

https://redmonk.com/jgovernor/2018/08/06/towards-progressive-delivery/
https://twitter.com/onsijoe/status/598235841635360768
https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
https://martinfowler.com/bliki/StranglerFigApplication.html

Introducing Knative Serving
Serving is where I’m going to start you off in Knative, and the coming chapters will
take you into a deeper dive on the major concepts and mechanisms. To begin with,
I’m going to spend this chapter getting you warmed up in two ways.

 To begin with, I’m going to use Knative. You’ll notice that I ducked and weaved
around this in chapter 1. I did walk you through an example, and that example was
realistic. But it was also intended to whet your appetite for the whole book and so
necessarily needed to touch on many points. A hypothetical with diagrams and nar-
rative is a quick way to do so.

 But now I’m going to put your fingers on a keyboard. We’ll use the kn CLI tool
to deploy software, changing its settings, changing its software, and finally to con-
figure traffic. I won’t be doing any YAMLeering. We’ll try a purely interactive
approach to Knative.

This chapter covers
 Deploying a new Service with Knative Serving

 Updating the Service with Revisions

 Splitting traffic between Revisions

 Understanding the major components of Serving and
what they do
23

24 CHAPTER 2 Introducing Knative Serving

T,
app.

kn
the
pro
em
 In the second part of the chapter, I’ll take a whistlestop tour of Serving’s key soft-
ware components. I’m doing this now because I want to introduce them in one easy-
to-find place. The following chapters are all structured around the concepts that Kna-
tive exposes to developers. I could introduce components as I go, but it would mean
that you might need to hunt through the book to find component information.

 This, too, will tie back to chapter 1, where I introduced you to the basic concept of
control loops. In this chapter, we’ll apply that basic concept to explain the high-level
architecture of Serving, which is one based on hierarchical control loops.

 By the end of the chapter, my goal is that you can (1) start poking around kn with
your own example apps, and (2) you’ll have a nodding acquaintance with Knative
Serving’s runtime components. These will set up our progress into following chapters,
where we’ll go into greater depth on concepts such as Configurations, Routes, and the
Autoscaler.

2.1 A walkthrough
In this section, I’m going to use kn exclusively to demonstrate several Knative Serving
capabilities.

NOTE kn is the “official” CLI for Knative, but it wasn’t the first. Before it came
a number of alternatives, such as knctl. These helped to explore different
approaches to a CLI experience for Knative. kn serves two purposes. The first
is as a CLI in itself, specific to kn, rather than requiring users to anxiously skit-
ter around kubectl pretending that Kubernetes isn’t right there. The second-
ary purpose is to drive out and Golang APIs for Knative.

2.1.1 Your first deployment

Let’s first use kn service list to ensure you’re in a clean state. You should see No
services found as the response.

 Now we create a service in the following listing using kn service create.

$ kn service create hello-example \
 --image gcr.io/knative-samples/helloworld-go \
 --env TARGET="First"

Creating service 'hello-example' in namespace 'default':

 0.084s The Route is still working to reflect the latest desired
specification.

 0.260s Configuration "hello-example" is waiting for a Revision to become
ready.

 4.356s ...
 4.762s Ingress has not yet been reconciled.
 6.104s Ready to serve.

Listing 2.1 Use kn to create our first service

The first argument for kn service
create is the name of the service.

The docker image reference. In this case, we’re using
a sample app image provided by the Knative project.

Inject an environment variable, TARGE
which will be consumed by the sample

 monitors
 deployment
cess and
its logs

25A walkthrough
Service 'hello-example' created with latest revision 'hello-example-pjyvr-1'
and URL:

http://hello-example.default.35.194.0.173.nip.io kn gives you the URL for the
newly-deployed software

The logs emitted by kn refer to concepts I discussed in chapter 1. The Service you pro-
vide is split into a Configuration and Route. The Configuration creates a Revision.
The Revision needs to be ready before Route can attach Ingress to it and Ingress
needs to be ready before traffic can be served at the URL.

 This dance illustrates how hierarchical control breaks your high-level intentions
into particular software to be configured and run. At the end of the process, Knative
has launched the container you nominated and configured routing so that it’s listen-
ing at the given URL.

 What’s at the URL? Let’s see in the following listing:

$ curl http://hello-example.default.35.194.0.173.nip.io
Hello First!

Very cheerful.

2.1.2 Your second deployment

Mind you, perhaps you don’t like First. Maybe you like Second better. Easily fixed in
the following listing:

$ kn service update hello-example \
 --env TARGET=Second

Updating Service 'hello-example' in namespace 'default':

 3.418s Traffic is not yet migrated to the latest revision.
 3.466s Ingress has not yet been reconciled.
 4.823s Ready to serve.

Service 'hello-example' updated with latest revision 'hello-example-bqbbr-2'
and URL:

http://hello-example.default.35.194.0.173.nip.io

$ curl http://hello-example.default.35.194.0.173.nip.io
Hello Second!

What happened is that I changed the TARGET environment variable that the example
application interpolates into a simple template, as shown in the following example:

Listing 2.2 The first hello

Listing 2.3 Updating hello-example

26 CHAPTER 2 Introducing Knative Serving
func handler(w http.ResponseWriter, r *http.Request) {
 target := os.Getenv("TARGET")
 fmt.Fprintf(w, "Hello %s!\n", target)
}

You may have noticed that the revision name changed. “First” was hello-example-
pjyvr-1 and “Second” was hello-example-bqbbr-2. Yours might look slightly differ-
ent, because part of the name is randomly generated. hello-example comes from the
name of the Service, and the 1 and 2 suffixes indicate the “generation” of the Service
(more on that in a second). But the bit in the middle is randomized to prevent acci-
dental name collisions.

 Did Second replace First? The answer is: it depends whom you ask. If you’re an
end user sending HTTP requests to the URL, yes, it appears as though a total replace-
ment took place. But from the point of view a developer, both Revisions still exist, as
shown in the following listing.

$ kn revision list
NAME SERVICE GENERATION AGE CONDITIONS READY REASON
hello-example-bqbbr-2 hello-example 2 2m3s 4 OK / 4 True
hello-example-pjyvr-1 hello-example 1 3m15s 3 OK / 4 True

I can look more closely at each of these in the following listing with kn revision
describe.

$ kn revision describe hello-example-pjyvr-1
Name: hello-example-pjyvr-1
Namespace: default
Age: 5m15s
Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
Env: TARGET=First
Service: hello-example

Conditions:
 OK TYPE AGE REASON
 ++ Ready 3h
 ++ ContainerHealthy 3h
 ++ ResourcesAvailable 3h
 I Active 3h NoTraffic

2.1.3 Conditions

It’s worth taking a slightly closer look at the Conditions table. Software can be in any
number of states, and it can be useful to know what they are. A smoke test or external
monitoring service can detect that you have a problem, but it may not tell you why you
have a problem.

Listing 2.4 How a hello sausage gets made

Listing 2.5 Both revisions still exist

Listing 2.6 Looking at the first revision

27A walkthrough
 What this table gives you is four pieces of information:

1 OK gives the quick summary about whether the news is good or bad. The ++ sig-
nals that everything is fine. The I signals an informational condition—not bad,
but not as unambiguous as ++. If things were going badly, you’d see !!. If Kna-
tive doesn’t know what’s happening, you’ll see ??.

2 TYPE is the unique condition being described. In this table we can see four
being reported. The Ready condition, for example, surfaces the result of an
underlying Kubernetes readiness probe. Of greater interest to us is the Active
condition, which tells us whether there’s an instance of the Revision running.

3 AGE reports on when this Condition was last observed to have changed. In the
example, these are all three hours. But they don’t have to be.

4 REASON allows a Condition to provide a clue as to deeper causes. For example,
our Active condition shows NoTraffic as its reason.

This line:

I Active 3h NoTraffic

Can be read as: “As of 3 hours ago, the Active Condition has an Informational status
due to NoTraffic”.
Suppose we got this line:

-- Ready 1h AliensAttackedTooSoon

We could read it as: “As of an hour ago, the Ready Condition become not-OK, because
the AliensAttackedTooSoon”.

2.1.4 What does Active mean?

When the Active condition gives NoTraffic as a reason, there are no active instances
of the Revision running. Suppose we poke it with curl:

$ kn revision describe hello-example-bqbbr-2
Name: hello-example-bqbbr-2
Namespace: default
Age: 7d
Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
Env: TARGET=Second
Service: hello-example

Conditions:
 OK TYPE AGE REASON
 ++ Ready 4h
 ++ ContainerHealthy 4h
 ++ ResourcesAvailable 4h
 I Active 4h NoTraffic

$ curl http://hello-example.default.35.194.0.173.nip.io
... a pause while the container launches
Hello Second!

28 CHAPTER 2 Introducing Knative Serving
$ kn revision describe hello-example-bqbbr-2
Name: hello-example-bqbbr-2
Namespace: default
Age: 7d
Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
Env: TARGET=Second
Service: hello-example

Conditions:
 OK TYPE AGE REASON
 ++ Ready 4h
 ++ ContainerHealthy 4h
 ++ ResourcesAvailable 4h
 ++ Active 2s

Note that we now see ++ Active, without the NoTraffic reason. Knative is saying that a
running process was created and is active. If you leave it for a minute, it will be shut
down again, and the Active Condition will return to complaining about a lack of traffic.

2.1.5 Changing the image

The Go programming language, aka “Golang” to its friends, “erhrhfjahaahh” to its
enemies, is the Old Hotness. The New Hotness is Rust, which I have so far been able
to evade forming an opinion about. All I know is that it’s the New Hotness and that
therefore, as a responsible engineer, I know that it’s better.

 This means helloworld-go no longer excites me, and I’d like to use helloworld
-rust. Easily done, as shown in the following listing.

$ kn service update hello-example \
 --image gcr.io/knative-samples/helloworld-rust
Updating Service 'hello-example' in namespace 'default':

 49.523s Traffic is not yet migrated to the latest revision.
 49.648s Ingress has not yet been reconciled.
 49.725s Ready to serve.

Service 'hello-example' updated with latest revision 'hello-example-nfwgx-3'
and URL:

http://hello-example.default.35.194.0.173.nip.io

And then I poke it, as shown in the following listing:

curl http://hello-example.default.35.194.0.173.nip.io
Hello world: Second

Note that the message is slightly different: “Hello world: Second” instead of “Hello
Second!”. Not being deeply familiar with Rust, I can only suppose that it forbids exces-
sive informality when greeting people it has never met. But it does at least prove that I
didn’t cheat and change the TARGET environment variable.

Listing 2.7 Updating the container image

Listing 2.8 The New Hotness says hello

29A walkthrough
 You have an important point to remember here: changing the environment vari-
able caused the second Revision to come into being. Changing the image caused a
third Revision to be created. And in fact, almost any update I make to a Service will
cause a new Revision to be stamped out.

 Almost any? What’s the exception? It’s Routes. Updating these as part of a Service
won’t create a new Revision.

2.1.6 Splitting traffic

I’m going to prove it by splitting traffic evenly between the last two Revisions, as shown
in the following listing.

$ kn service update hello-example \
 --traffic hello-example-bqbbr-2=50 \
 --traffic hello-example-nfwgx-3=50

Updating Service 'hello-example' in namespace 'default':

 0.057s The Route is still working to reflect the latest desired
specification.

 0.072s Ingress has not yet been reconciled.
 1.476s Ready to serve.

Service 'hello-example' updated with latest revision 'hello-example-nfwgx-3'
(unchanged) and URL:

http://hello-example.default.35.194.0.173.nip.io

The --traffic parameter allows us to assign percentages to each revision. The key is
that the percentages must all add up to 100. If I give 50 and 60, I’m told that given
traffic percents sum to 110, want 100. Likewise, if I try to cut corners by giving
50 and 40, I’ll get given traffic percents sum to 90, want 100. It’s my responsi-
bility to ensure that the numbers add up correctly.

 Does it work? Let’s see in the following listing:

$ curl http://hello-example.default.35.194.0.173.nip.io
Hello Second!

$ curl http://hello-example.default.35.194.0.173.nip.io
Hello world: Second

It works. Half your traffic will now be allocated to each Revision.
 50/50 is only one split; you may split the traffic however you please. Suppose you

had Revisions called un, deux, trois, and quatre. You might split it evenly, as shown
in the following listing:

Listing 2.9 Splitting traffic 50/50

Listing 2.10 Totally not a perfect made-up sequence of events

30 CHAPTER 2 Introducing Knative Serving
$ kn service update french-flashbacks-example \
 --traffic un=25 \
 --traffic deux=25 \
 --traffic trois=25 \
 --traffic quatre=25

Or you can split it so that quatre is getting a tiny sliver to prove itself, as shown in the
following listing, while the bulk of the work lands on trois:

$ kn service update french-flashbacks-example \
 --traffic un=0 \
 --traffic deux=0 \
 --traffic trois=98 \
 --traffic quatre=2

You don’t explicitly need to set traffic to 0%; you can achieve the same by leaving out
Revisions from the list, as shown in the following listing:

$ kn service update french-flashbacks-example \
 --traffic trois=98 \
 --traffic quatre=2

Finally, if I’m satisfied that quatre is ready, I can switch over all the traffic using @latest
as my target, as shown in the following listing:

$ kn service update french-flashbacks-example \
 --traffic @latest=100

2.2 Serving Components
As promised, I’m going to spend some time looking at some Knative Serving internals.
In chapter 1 I explained that Knative and Kubernetes are built on the concept of con-
trol loops. A control loop involves a mechanism for comparing a desired world and an
actual world, then taking action to close the gap between them.

 But that’s the boxes-and-lines explanation. The concept of a control loop needs to
be embodied as actual software processes. Knative Serving has several of these, falling
broadly into four groups:

1 Reconcilers, responsible for acting on both user-facing concepts like Services,
Revisions, Configurations, and Routes as well as lower-level housekeeping.

2 The “Webhook”, responsible for validating and enriching the Services, Configu-
rations, and Routes that users provide.

Listing 2.11 Even four-way split

Listing 2.12 Production and next versions

Listing 2.13 Implicit zero traffic level

Listing 2.14 Targeting @latest

31Serving Components
3 Networking controllers that configure TLS certificates and HTTP ingress routing.
4 The Autoscaler/Activator/Queue-Proxy triad, which manage the business of

comprehending and reacting to changes on traffic.

2.2.1 The Controller and Reconcilers

Let’s talk about names for a second.
 Knative has a component named controller, which is a bundle of individual ”Rec-

oncilers”. Reconcilers are controllers in the sense I discussed in chapter 1: a system
that reacts to changes in the difference between desired and actual worlds. Reconcil-
ers are controllers, but the controller isn’t a controller. Got it?

 No? You’re wondering why the names are different? The simplest answer is, to
avoid confusion about what’s what. That may sound silly. Bear with me, I promise it
will make sense.

 At the top, in terms of actual running processes managed directly by Kubernetes,
Knative Serving only has one controller. But in terms of logical processes, Knative
Serving has several controllers, running in goroutines inside the single physical con
troller process. Moreover, Reconciler is a Golang interface that implementations of
the controller pattern are expected to implement.

 So that we don’t wind up saying “the controller controller” and “the controllers
that run on the controller” or other less-than-illuminating naming schemes, we have
instead two names: controller and Reconciler.

 Each Reconciler is responsible for some aspect of Knative Serving’s work, which
falls into two categories. The first category is simple to understand—it’s the reconcil-
ers responsible for managing the developer-facing resources. These reconcilers are
called configuration, revision, route, and service.

 For example, when you use kn service create, the first port of call will be for a
Service record to be picked up by the service controller. When you used kn service
update to create a traffic split, you sent the route controller outside to work for you.
I’ll touch on several of these controllers in coming chapters.

 Reconcilers in the second category work behind the scenes to carry out essential
lower-level tasks. These are labeler, serverlessservice, and gc. The labeler is part
of how networking works; it essentially sets and maintains labels on Kubernetes
objects that networking systems can use to target them for traffic. I’ll touch on this
when we get to routing.

 The serverlessservice reconciler is part of how the Activator works. It reacts to
and updates ServerlessService records (say that five times fast!). These are also
mostly about networking in Kubernetes-land. I’ll go into more depth on this in the
routing chapter.

 Last, the gc reconciler performs garbage-collection duties, and hopefully, you’ll
never need to think about it again (see figure 2.1).

32 CHAPTER 2 Introducing Knative Serving
2.2.2 The webhook

Things go wrong. A great deal of software engineering is centered on ensuring that
when things do go wrong, they at least choose to go wrong at the least-painful and/or
least-Tweetable moment. Type systems, static analysis, unit test harnesses, linters, fuz-
zers, the list goes on and on. We submit to their nagging because solving the mysteries
of fatal errors in production is less fun than Agatha Christie made it out to be.

 At runtime, Serving relies on the completeness and validity of information pro-
vided about things you want to manage (for example, Services) and how you want it to
behave generally (for example, Autoscaler configuration). This brings us to the web-
hook, which validates and augments your submissions. Like the controller, it’s a group
of logical processes that are collected together into a single physical process for ease
of deployment.

 The name “webhook” is a little deceptive, because it describes the implementation
rather than its actual purpose. If you’re familiar with webhooks, you might have
thought that its purpose was to dial out to an endpoint that you provide. Not so. Or
perhaps it was an endpoint that you could ping yourself. Closer, but still incorrect.
Instead, the name comes from its role as a Kubernetes “admissions webhook”. When
processing API submissions, the Knative Webhook is registered as the delegated
authority to inspect and modify Knative Serving resources. A better name might be
“Validation and Annotation Clearing House” or perhaps the “Ditch It or Fix It Empo-
rium”. But “webhook” is what we have.

 The webhook’s principal roles include:

 Setting default configurations: This includes values for timeouts, concurrency
limits, container resources limits, and garbage collection timing. You only need
to set values you want to override. I’ll touch on these as needed.

 Injecting routing and networking information into Kubernetes: I’ll discuss this
when I get to routing.

Figure 2.1 The serving
controller and its Reconcilers.

33Serving Components
 Validating that users didn’t ask for impossible configurations: For example, the web-
hook will reject negative concurrency limits. I’ll refer to these when needed.

 Resolving partial Docker image references to include the digest: For example, example
/example:latest would be resolved to include the digest, so it looks like exam
ple/example@sha256:1a4bccf2. . . .I’m going to revisit this topic a few times,
but generally, this is one of the best things Knative can do for you, and the web-
hook deserves the credit for it.

2.2.3 Networking controllers

Early versions of Knative relied directly on Istio for core networking capabilities. That
hasn’t entirely changed. In the default installation provided by the Knative project,
Istio will be installed as a component and Knative will use part of its capabilities.

 However, as it has evolved, more of Knative’s networking logic has been abstracted
up from Istio. Doing so allows swappability of components. Istio might make sense for
your case, but it’s featuresome and might be overkill. But you might have Istio provided
as part of your standard Kubernetes environment. Knative will extend to either
approach.

 Knative Serving requires that networking controllers answer for two basic record
types: Certificate and Ingress.

CERTIFICATES

TLS is essential to the safety and performance of the modern internet, but the busi-
ness of storing and shipping TLS certificates has always been inconvenient. The Kna-
tive Certificate abstraction provides information about the TLS certificate that is
desired, without providing it directly.

 For example, TLS certificates are scoped to particular domain names or IP
addresses. When creating a Certificate, a list of DNSNames is used to indicate what
domains the Certificate should be valid for. A conforming controller can then create
or obtain certificates that fulfill that need.

 I’ll have more to say about Certificates when we dive into routing.

INGRESS

Routing traffic is always one of those turtles-all-the-way-down affairs. Something, some-
where, is meeting traffic at the boundary of your system. In Knative, that’s the
Ingress.15

 Ingress controllers act as a single entrance to the entire Knative installation. They
convert Knative’s abstract specification into particular configurations for their own
routing infrastructure. For example, the default networking-istio controller will
convert a Knative Ingress into an Istio Gateway.

 Knative Ingress has several implementations, which I’ll revisit later.

15 This is distinct from a Kubernetes Ingress.

34 CHAPTER 2 Introducing Knative Serving
2.2.4 Autoscaler, Activator, and Queue-Proxy

These three work together quite closely, so I’ve grouped them under the same head-
ing (see figure 2.2).

Figure 2.2 The triad of Autoscaler,
activator, and queue-proxy.

NOTE When I talk about “the Autoscaler”, I’m generally referring to the Kna-
tive Pod Autoscaler (KPA). This is the out-of-the-box Autoscaler that ships
with Knative Serving. It is possible to configure Knative to use the Kubernetes
Horizontal Pod Autoscaler (HPA) instead. In future the KPA might be retired
as the HPA becomes better suited to serverless patterns of activity, but at time
of writing that seemed to be a fairly distant milestone. In this book, I focus
exclusively on the KPA.

The autoscaler is the easiest to give an elevator pitch for: observe demand for a Ser-
vice, calculate the number of instances needed to serve that demand, then update the
Service’s scale to reflect the calculation. You’ve probably recognized that this is a
supervisory control loop. Its desired world is “minimal mismatch between demand
and instances”. Its output is a scale number that becomes the desired world of a Ser-
vice control loop (see figure 2.3).

 It’s worth noting that the Knative Pod Autoscaler operates solely through horizon-
tal scaling. That is, launching more copies of your software. “Vertical scaling” means
launching it with additional computing resources. In general, vertical scaling is sim-
pler—you pay more for a beefier machine. But the costs are highly nonlinear, and you
have an upper limit to what can be achieved. Horizontal scaling typically requires
deliberate architectural decisions to make it possible, but once achieved can face
higher demands than any one machine could handle. The Knative Pod Autoscaler

35Serving Components
Figure 2.3 The Knative Pod
Autoscaler is a control loop.

assumes you’ve done the work to ensure that instances coming and going at a rapid
clip won’t be overly disruptive.

 When no traffic exists, the desired number calculated by the Autoscaler will even-
tually be set to zero. This is great, right until a new request shows up without anything
ready to serve it. We could plausibly bounce the request with an HTTP 503 Service
Unavailable status—perhaps even, in a fit of generosity, providing a Retry-After
header. The problem is that (1) humans hate this, and (2) vast amounts of upstream
software assumes that network requests are magical and perfect and can never fail.
They’ll either barfing on their users or, more likely, ignore your Retry-After and ham-
mer the endpoint into paste. Not to mention (3), which is that all of this will be
screencapped and mocked on Reddit.

 But what to do when no instances are running—the dreaded cold start? In this
case, the Activator is a traffic target of last resort; the Ingress will be configured to
send traffic for routes with no active instances to the Activator (see figure 2.4).

Figure 2.4 The Activator’s
role in managing cold starts.

36 CHAPTER 2 Introducing Knative Serving
1 The Ingress receives a new request. The Ingress sends the request to its config-
ured target, which is the Activator.

2 The Activator places the new request into a buffer.
3 The Activator pokes the Autoscaler. The poke does two things: first, it carries

information about requests waiting in the buffer. Second, the arrival of a poke
signal prompts the Autoscaler to make an immediate scaling decision, instead
of waiting until the next scheduled decision time.

4 After considering that a request is waiting to be served, but there are zero
instances available to serve it, the Autoscaler decides that there ought to be one
instance running. It sets a new scale target for Serving.

5 While waiting for the Autoscaler and Serving to do their work, the Activator
polls Serving to see if any instances are live.

6 Serving’s actions cause Kubernetes to launch an instance.
7 The Activator learns from its polling that an instance is now available and

moves the request from its buffer to a simple proxy service.
8 The proxy component sends the request to the instance, which responds nor-

mally.
9 The proxy component sends the response back to the Ingress, which then sends

it back to the requester.

Does this mean all traffic flows through the Activator? No. The Activator remains on
the data path during the transition from “no instances” to “enough instances”. Once
the Autoscaler is satisfied that it has enough capacity to meet current demand, it
updates the Ingress, changing the traffic target from the Activator to the actual run-
ning instances. At this point that Activator no longer has any role in proceedings.

 The exact timing of this update depends mostly on how much traffic has piled up
and how long it takes to launch instances to serve it. Imagine that 10,000 requests
arrive and the Activator then sprayed them at the first instance foolish enough to stick
its head above the trenches. Instead, the Activator throttles its proxy until capacity
catches up with demand. Once requests are flowing smoothly, the Autoscaler’s own
logic will remove the Activator from the data path.

 The final component of this triad is the Queue-Proxy. This is a small proxy process
that sits between your actual software and arriving traffic. Every instance of your Ser-
vice will have its own Queue-Proxy, running as a sidecar. Knative does this for a few
reasons. One is to provide a small buffer for requests, allowing the Activator to have a
clear signal that a request has been accepted for processing (this is called “positive
handoff”). Another purpose is to add tracing and metrics to requests flowing in and
out of the Service.

 We’ll dig into those two functions—positive handoff and metrics—later in the
book.

37Serving Components
Summary
 kn is a CLI tool for interacting with Knative, including Serving.
 kn service lets you view, create, update, and configure Knative Services,

including splitting traffic between Revisions.
 Knative Serving has a controller process, which is a collection of components

called Reconcilers. Reconcilers act as feedback controllers.
 There are Reconcilers for Serving’s core record types (Service, Route, Configu-

ration, and Revision), as well as housekeeping Reconcilers.
 Knative Serving has a webhook process, which intercepts new and updated

records you submit. It can then validate your submissions and inject additional
information.

 The Knative Pod Autoscaler is a feedback control loop. It compares the ratio of
traffic to instances and raises or lowers the desired number of instances that the
serving controller controls.

 The Activator is assigned Ingress routes when no instances are available. This
assignment is made by the Autoscaler.

 The Activator is responsible for poking the Autoscaler when new requests
arrive, to trigger a scale-up.

 While instances are becoming available, the Activator remains on the data path
as a throttling, buffering proxy for traffic.

 When the Autoscaler believes there is enough capacity to serve demand, it
removes the Activator from the data path by updating Ingress routes.

 Knative Serving’s Networking is highly pluggable. Core implementations are
provided for two functions: Certificates and Ingress.

 Certificate controllers accept a definition of desired Certificates and must provi-
sion new certificates or map existing certificates into your software.

 Ingress controllers accept Routes and convert these into lower-level routing or
traffic management configurations.

 Ingress controller implementations include Istio-Gateway, Gloo, Ambassador,
and Kourier.

References
 github.com/cppforlife/knctl

https://github.com/cppforlife/knctl

Configurations
 and Revisions
My focus in this chapter is provide a guided tour of Serving’s dynamic duo, Confi-
guration and Revision. This separation into two concepts isn’t for the mere joy of
complexity. To explain the motivation, I first give a fictionalized account of the his-
tory of software deployment, starting somewhere in the late Triassic period up until
the current, slightly more advanced era of Thought Leadership.

 After the history lesson, I start with Configurations. These are the main way
you’ll describe your software and your intentions to Knative Serving. The coverage
of Configurations is necessarily brief, because Configurations mostly exist to stamp
out Revisions.

 My discussion of Revisions will be substantially longer, because we have much
ground to cover. We’ll look at containers, container images, commands and envi-

This chapter covers
 Understanding the brief history of deployments up to

progressive deployment

 Learning the anatomy of Configurations

 Describing the anatomy of Revisions
38

39Those who cannot remember the past are condemned to redeploy it
ronments, volumes, consumption limits, ports and probes, concurrency, and timeouts.
The style is narrative, but you can skip things you don’t care about right now and refer
to them later.

 Before we begin, I want you to refresh a key concept, which is that Revisions are
created when a Configuration is created or changed. They don’t have independent
existence. In the table of contents for this chapter, you might have formed the sweet
illusion that you can deal entirely with Configurations in one place and entirely with
Revisions in a different place. That isn’t so. The knobs and dials I describe as being
part of a Revision have to get there through a Configuration. While writing about
Revisions with my left hand, my right hand is running commands that refer to Config-
urations. If you get lost or confused, reorient yourself to this landmark: Revisions are
created only when Configurations are changed or created.

3.1 Those who cannot remember the past are condemned
to redeploy it
Maybe you remember what you had for breakfast. Maybe you don’t. But if by lunch
your stomach feels ill and you go to a doctor, she’ll want to know what you ate. Telling
her “well, I’m not hungry now, so I guess I ate something, but I’m not sure what it was”
is unlikely to spark much diagnostic insight. (You’ll still receive a bill.)

 Left to its own devices, Kubernetes will make the world appear changeless and
timeless, a permanent “steady state”. Whenever the desired and actual worlds become
misaligned, it takes action to reconcile the difference. Afterwards, it doesn’t care that
the disturbance ever occurred. It doesn’t remember. The ripple of the disturbance
has faded, leaving the placid pond of production16.

 When an outside observer wishes to reconstruct history, they may be out of luck.
 Like the doctor, we may, for various reasons, wish to know what led us to the cur-

rent situation, whether for diagnosis or treatment. When you operate without history,
you’re pretty much swinging across the YOLO ravine on a frayed rope. Eventually it
will snap, sending your hurtling down into the metaphor-crocodiles at the bottom
(I’ve trained them to mock you).

 This has led to a small cottage industry of mechanisms for capturing history from,
or injecting history into, Kubernetes. For example:

 Various fields, annotations, and metadata, such as kubernetes.io/change-
cause that provide limited historical or causal information directly on a partic-
ular Kubernetes record.

 The inbuilt Deployment mechanism provided by vanilla Kubernetes maintains
deployment.kubernetes.io/revision annotations on ReplicaSets that it con-
trols, which provides a partial history of the Deployment.

16 It can be argued that I’m wrong, that there are many ways to get a sense of history: logs, Kubernetes events,
and so forth. But these can be ephemeral, and besides, alliteration is always alluring to awful authors.

40 CHAPTER 3 Configurations and Revisions
 The Kubernetes auditing system can be configured to emit an extremely
detailed log of changes, allowing later reconstruction of history as seen by the
Kubernetes API server.

 Tools and practices for “GitOps”, where changes to be submitted are first
checked into a Git repository before being applied to a Kubernetes cluster.

 Specialized history-visualization tools such as Salesforce’s Sloop.
 The teeming multitudes of observability and/or monitoring tools and services.

Broadly, these fill two related but distinct purposes:

1 What’s the history of the cluster? How did it get to the current condition? None
of the solutions above fully covers these. Either they focus on changes to the
desired world (Sloop, GitOps), or they produce data that can hint at changes to
the actual world (metrics and logs), or an incomplete mix of these (Kubernetes
Audit). But not both.

2 Can I go back in time, please? The current version of the software is wrong, a
previous version was not As wrong, so we need to switch back to the previous
version. The need for time travel is projected across the entire hierarchy of con-
trol, from within a cluster way back into developer-land, because rolling back to
a previous version can take many forms: a git revert, Spinnaker canary analy-
sis, GitOps, and there are many others.

Knative Serving wants a more general version of the time-travel capability. It’s not
enough to select a version to run. Instead Knative Serving wants to run one or multiple
versions concurrently. If I have versions 1, 2, and 3 of my software, I want to run a mix of
1, 2, and 3 (1 only, 1 and 2, 1 and 3 . . .). And I want to change the mix whenever I want.

 Multiple versions? At once? Am I crazy? Perhaps, but to decide for yourself, I need
to tell you a story.

3.2 The bedtime story version of the history of deployment as a concept
Another way to look at the two desires for causality is this:

1 Something has gone wrong. Why?
2 We changed something and stuff broke. Let’s undo the change.

The latter is what I want to focus on, because it’s an ancient problem. For as long as there
have been production systems, there have been mandates that it cannot be allowed to
stop running during business hours. An obvious logic then unfolded in the early years.

AXIOM 0 If it breaks, you’re fired.

AXIOM 1 The system sometimes breaks when it is changed.

AXIOM 2 The changes that cause breakage were due to human error in
either the change, or in how the change was applied, or how the change
interacted with other changes.

THEOREM 1 Therefore: Don’t change anything.

41The bedtime story version of the history of deployment as a concept
QED. High fives and slide rules for everyone!
 But wait, here comes the boss’s boss’s boss . . .

AXIOM 3 We need to integrate with Grot-O-Matic 7.36, because our customer
will deliver records in the form of blurry Klingon hieroglyphs via FTP-over-
pigeon-droppings every 24 hours. Oh, and if you don’t make this change,
you’re fired.

THEOREM 2 Ahem. Well. I guess we need to change something, or we’re
fired. But if it breaks, we’re fired. Therefore: be careful, extremely careful,
about changes, and slather everything that moves with documentation to
prove that It Wasn’t Me, Boss.

Fewer high fives this time.
 And so, for example, many firms had Change Approval Boards and required

would-be mutators to account for their sins in a uniform way. Then the Change Win-
dow would open every quarter, and if you were lucky, your change would make it
through before the window slammed shut again. And god help you if your change got
in . . . but you realized it was wrong.

 Then later we developed tools to make this much less painful. For example, version
control systems. These were around in various forms for ages, but when Git and GitHub
came along they became standard, the way many folks work. At the same time folks
began to evolve the concepts of Continuous Integration and Continuous Deployment.

 Here there arose three new possibilities, the Blue/Green deployment, the Canary
Deployment, and the Progressive Deployment.

3.2.1 The blue/green deployment

You have a version of your software already running and serving traffic. Let’s call this
“Blue” (see figure 3.1).

Figure 3.1 Blue.

42 CHAPTER 3 Configurations and Revisions
You now wish to deploy a new version of your software, let’s call it “Green”.
 A first approach might be to stop Blue, then deploy Green. The time between

“Stop Blue” and “Start Green” is scheduled downtime. That was roughly the state of
the world for Theorem 2 (see figure 3.2).

Scheduled downtimes are still downtimes. It would be nice if we didn’t have to stop
Blue first. And thanks to the magic of load balancers and proxies and gateways and
routers, we don’t have to. What we do instead is (see figure 3.3):

❶ Start Green
❷ Switch traffic from Blue to Green
❸ Stop Blue

From here, certain tools will tick-tock between Green and Blue as the running version.
They take turns. This approach is popular because all the software needs to do is look
at a name or label to see what’s in production (“I see we’re running Green right now”)
and to pick the other value (“So I will call the next version Blue during this process”).

Figure 3.2 Scheduled downtime Blues.

43The bedtime story version of the history of deployment as a concept
Figure 3.3 A blue/green deployment.

The system managing Blue/Green deployment won’t need to maintain state about
what’s what.

 Other systems prefer to keep the meanings stable. The running system is always
Blue, the next version is always Green. That works fine so long as something will keep
records.

 Upgrades without taking a scheduled downtime is the basic motivation for
blue/green deployments. But there are other benefits. One is that we can now ensure
Green is “good” before we switch to Blue. Or alternatively, if Green is “bad”, we can
more easily roll the system back to Blue, because our muscle for switching traffic is
well-developed. To ensure rollbacks are fast, we can keep Blue running for a little
while until Green has proved itself worthy of our trust.

3.2.2 The canary deployment

Blue/green deployments are the minimum you should accept from any system, tool,
or crazy shell script written by the longest-serving engineer, and so on, that’s passed
off as continuous deployment. Done properly, blue/green deployment is a safe way to
deploy software.

 But like many conservative, ultra-safe systems, it can be wasteful. Here’s an exam-
ple (assuming that my production system is always called Blue and my next version is
always called Green):

44 CHAPTER 3 Configurations and Revisions
 During the normal production steady state, I need enough capacity to run Blue.
But during the blue/green deployment, I need enough capacity for Blue and Green.
In fact, I may need additional capacity on top of that to deal with things such as data-
base migrations, files being downloaded to new instances of Green, additional con-
sumption due to new Green features, and so on, as well as the overhead imposed on my
control plane by the business of rolling out and cutting over to Green. And for safety,
I want to keep Blue around until I’m satisfied that Green won’t need to be rolled back.

 We have two considerations that are at odds. The first is efficiency, the second is
safety. A canary deployment helps with both of these problems.

 In a canary deployment (see figure 3.4), we roll out a reduced-size sample of
Green to run alongside Blue. For example, it might be that in our normal situation,
we’d deploy 100 copies of our software. Instead of having 100 Blue and 100 Green
during the blue/green process, we might start with 100 Blue and 1 Green. This single
copy is the “canary”17.

17 “Canary” here is an analogical reference to the birds Victorian-era coal miners brought with them to deep pits
and also, one supposes, to their version of tech conventions. Carbon monoxide, somewhat like vaporware
announced during a keynote speech, is colorless, odorless, and lethal, but it can build slowly. The canary,
being small, would die earlier than miners and so they would get early warning of the danger.

Figure 3.4 A canary
deployment.

45The bedtime story version of the history of deployment as a concept
Instead of cutting all traffic over to Green, we’ll instead send a fraction of requests to
it and see what happens. Then we might raise the number of Green copies to 10.
If we’re satisfied with how they run, we’ll then proceed to fully deploy Green. We’ll
then cut over and immediately remove Blue. After all, our canaries established that
Green was safe, so rollback speed is a less critical consideration.

3.2.3 Progressive deployment

Mind you, what we’re doing is still fairly wasteful, insofar as we reach a peak level of
capacity consumption that’s around 2x the steady state level. Now we arrive at the
third evolution of our approach: progressive deployment.

 In progressive deployment, we keep the consumption level much closer to steady
state. Say we have 100 instances of Blue. We first perform a blue/green deployment of
one instance, instead of our entire system. Afterward, we have 99 Blue and 1 Green. We
run this 1 Green as a canary for a while. If we’re happy, we perform another
blue/green deployment, this time for 9 instances. Afterward, there are 90 Blue and 10
Green. Then, finally, we might complete the rollout of Green, retiring Blue as we go.

 We have many permutations here. For example, to limit the peak surge, we might
roll out 1 instance at a time, or a fixed percentage at a time, rather than perform a
blue/green deployment for the entire pool. Progressive deployment is essentially the
logical endpoint that arises once you can split traffic. It limits risk through canaries, it
limits utilization through upgrading a fraction at a time (see figure 3.5).

3.2.4 Back to the future

What does Knative Serving do? Blue/green? Canary? Progressive?
 The answer is: all of these. Sort of.
 In my previous discussion, I talked about two major themes: cluster history and

safe, efficient deployments. Knative Serving sets out to answer these with two core
types: the Configuration and the Revision. The connection is that each Revision is a
snapshot of a Configuration, and a Configuration is the template for the “most
recent” Revision. An analogy often used is to git: you can think of each Revision is a
particular commit. Then a Configuration is the HEAD of a branch of Revisions.

 How does this design connect back to my discussion above? Let’s review:

 History: Revisions represent snapshots of Configurations over time, giving a
partial history of your system.

 Time travel and deployments: Multiple Revisions can receive traffic for a single
endpoint. This allows the blue/green, canary, and progressive deployment pat-
terns.

But there’s something new here. Previously the business of deployment was a process
with a binary outcome. You had version N running, something occurs, after which you
run version N+1. That process might include a period of both running, but the end
point was one version.

46 CHAPTER 3 Configurations and Revisions
 Knative Serving makes this easy, but it isn’t limited to it. You can, if you wish, run
any number of Revisions, so while the binary outcome is conventional, it isn’t guaran-
teed. Deployment is now a fuzzy concept rather than a finite state machine.

3.3 The anatomy of Configurations
A Configuration is a definition of your software. Up to now I’ve avoided showing one
in the flesh. I wanted to show you kn first and avoid being too Kubernetes-centric. But
now it’s time for us to accept our fates as enterprise YAML wranglers. It will be easiest
for me to explain Configurations by using the YAML form.

 To ease the transition, here’s a kn command we used in chapter 2, as shown in the
following listing.

$ kn service create hello-example \
 --image gcr.io/knative-samples/helloworld-go \
 --env TARGET="First"

Listing 3.1 The before

Figure 3.5 Utilization of
deployments compared.

47The anatomy of Configurations
And here’s an equivalent Configuration YAML file, as shown in the following listing.

apiVersion: serving.knative.dev/v1
kind: Configuration
metadata:
 name: helloworld-example
spec:
 template:
 spec:
 containers:
 - image: gcr.io/knative-samples/helloworld-go
 env:
 - name: TARGET
 value: "First"

Everything from the kn CLI is present in the YAML version. We have a name, a con-
tainer, and an environment variable. We also have a fair amount more, including a fair
amount of whitespace.
This document isn’t meant to be used by kn. Those of you who have already drunk the
Kule-aid recognize it as a Kubernetes record, which would typically be submitted to
Kubernetes using kubectl apply18. Consequently, it sports elements that are there to
fit into Kubernetes conventions. For example, the apiVersion and kind elements are
mostly there to identify the record type so that relevant controllers can be alerted to
creations and updates. The metadata section is, under the hood, a Kubernetes type
that can store many kinds of information. We provided a name here, but I have many
more possibilities that I’m going to bring up as we go along.

 Last, there’s this curious little hop-skip-hop:

spec:
 template:
 spec:

This isn’t an accident, because there are three “things” here:

1 The outermost spec belongs to the Configuration itself. The name spec is
another Kubernetes convention, meaning “desired world for this thing”.

2 The template is a RevisionTemplateSpec, which I’ll discuss in a second.
3 The innermost spec is a RevisionSpec. That is, it’s the spec of a Revision.

Hopefully, this tips you off to the fact that the template is the “thing” that’s converted
into Revisions. But it goes further than that: the template is what causes Revisions to be
created.

 This is important, so I’ll repeat it.

Listing 3.2 The after

18 Under the hood, kn is doing the same thing that kubectl is doing. It takes a YAML document and ships it off
to the Kubernetes API server.

Listing 3.3 Yo dawg, I heard you like specs

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://github.com/salesforce/sloop
https://www.weave.works/blog/what-is-gitops-really
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

48 CHAPTER 3 Configurations and Revisions
 Changing the template causes Revisions to be created.
 And in fact, this is true from the moment that I first submit a Configuration. I can

see this using kubectl directly, as shown in the following listing.

$ kubectl apply -f example.yaml
configuration.serving.knative.dev/helloworld-example created

$ kubectl get configurations
NAME LATESTCREATED LATESTREADY READY REASON
helloworld-example helloworld-example-8sw7z helloworld-example-8sw7z True

$ kubectl get revisions
NAME CONFIG NAME K8S SERVICE NAME GENERATION READY REASON
helloworld-example-8sw7z helloworld-example helloworld-example-8sw7z 1 True

I can see that by submitting the Configuration, I prompted Serving to create a Revi-
sion as well. That Revision isn’t meaningfully different to one created by kn, as I can
see in the following listing with kn revision list.

$ kn revision list
NAME SERVICE GENERATION AGE CONDITIONS READY REASON
helloworld-example-8sw7z 1 2m24s 3 OK / 4 True

Your eye might be drawn to CONDITIONS and its value, 3 OK / 4. Despite appearances,
this doesn’t mean your Revision is one-quarter evil. It refers to something we’ve seen
before: Revisions scale to zero when there’s no traffic. You can see this in the following
listing with kn revision describe.

$ kn revision describe helloworld-example-8sw7z
Name: helloworld-example-8sw7z

... snipped ...

Conditions:
 OK TYPE AGE REASON
 ++ Ready 2d
 ++ ContainerHealthy 2d
 ++ ResourcesAvailable 2d
 I Active 2d NoTraffic

Remember that ++ means “OK”. Counting the conditions from top to bottom, three
of them are ++ out of four. Hence 3 OK / 4.

 As well as creating Revisions via the creation of Services or Configurations, I can
also create new Revisions by editing a Configuration or Service, as shown in the follow-
ing listing. In chapter 2, I used kn service update to amend things.

$ kn service update hello-example --env TARGET=Second

Listing 3.4 Using raw kubectl

Listing 3.5 kn revision list

Listing 3.6 kn revision describe to the rescue

Listing 3.7 Updating using kn

https://www.usenix.org/system/files/osdi18-shan.pdf
https://www.usenix.org/system/files/osdi18-shan.pdf
https://www.usenix.org/system/files/osdi18-shan.pdf
https://github.com/rakyll/hey

49The anatomy of Configurations
This command amends a Service, which amends the Configuration, which causes a
new Revision to pop into existence.

 The equivalent would be to edit my YAML to look like the following listing.

apiVersion: serving.knative.dev/v1
kind: Configuration
metadata:
 name: helloworld-example
spec:
 template:
 spec:
 containers:
 - image: gcr.io/knative-samples/helloworld-go
 env:
 - name: TARGET
 value: "Second"

And then submit it with kubectl again in the following listing.

$ kubectl apply -f example.yaml
configuration.serving.knative.dev/helloworld-example configured

$ kubectl get configurations
NAME LATESTCREATED LATESTREADY READY REASON
helloworld-example helloworld-example-j4gv5 helloworld-example-j4gv5 True

$ kubectl get revisions
NAME CONFIG NAME K8S SERVICE NAME GENERATION READY REASON
helloworld-example-8sw7z helloworld-example helloworld-example-8sw7z 1 True
helloworld-example-j4gv5 helloworld-example helloworld-example-j4gv5 2 True

Now I can see two Revisions, but there’s still only one Configuration with the name
helloworld-example. As a helpful hint, Revisions have a generation count, which is
set at its creation time. Generations are monotonic numbers. Each Revision will be a
higher number than earlier Revisions, but there’s no firm guarantee that all numbers
will be sequential. For example, you might have deleted Revisions yourself.

3.3.1 Configuration status

Is that all that’s interesting about Configurations? Not quite. We’ve shown the spec
(a Desired World, in chapter 1 terms). But you also have a status section, which is set
by the configuration Reconciler (an Actual World, in chapter 1 terms). I can use
kubectl and the handy JSON utility jq to display my Configuration status19, as shown
in the following listing.

Listing 3.8 The second YAML

Listing 3.9 Amending with kubectl apply

19 This example of using jq to stitch up kubectl output is something of a litmus test. On one side, you have the
“Unix pipes are the high watermark of software design” crowd, for whom hoarding one-liners like some kind
of CLI Smaug is right and worthy. Then there are “Human-Computer interface research did not end in 1970,
which is now 50 goddamn years ago” weirdoes like me, who harbor radical notions about being allowed to do
damn work without having to learn Yet Another Minilanguage. This divide is a poetic illustration of why Kna-
tive is at all necessary. The developer experience for Kubernetes isn’t “batteries included”. It’s “learn chemis-
try and try not to poison yourself with lead”.

https://github.com/knative/client/issues/626%7d%7d

50 CHAPTER 3 Configurations and Revisions
$ kubectl get configuration helloworld-example -o json | jq '.status'
{
 "conditions": [
 {
 "lastTransitionTime": "2019-12-03T01:25:34Z",
 "status": "True",
 "type": "Ready"
 }
],
 "latestCreatedRevisionName": "helloworld-example-j4gv5",
 "latestReadyRevisionName": "helloworld-example-j4gv5",
 "observedGeneration": 2
}

You can see two basic sets of information. The first is conditions, which I talk about
more later, during my discussion of Revisions. The second set of information is the trio of
latestCreatedRevisionName, latestReadyRevisionName, and observedGeneration.

 Let’s start with observedGeneration. Earlier you saw that each Revision is given a
generation number. It came from observedGeneration. When you apply an update to
the Configuration, the observedGeneration gets incremented. When a new Revision
is stamped out, it takes that number as its own.

 latestCreatedRevisionName and latestReadyRevisionName are the same here,
but they need not be. Simply creating the Revision record doesn’t guarantee that
actual software is up and running. These two fields make the distinction. In practice, it
allows you to spot the process of a Revision being acted on by lower-level controllers.

 These fields are useful for debugging. If you submit an updated Configuration but
don’t otherwise see expected behavior, compare them. For example, suppose I update
my Configuration from foo-1 to foo-2, but didn’t see any change in behavior when
sending HTTP requests. If I check and see that latestCreatedRevisionName is foo-2
and latestReadyRevision is foo-1, then I know something is wrong with foo-2 that
merits further investigation.

3.3.2 Taking it all in with kubectl describe

The observant among you have noticed that kn has talked about Services, but I’ve
talked about Configurations. This is basically because kn doesn’t treat Configurations
as a standalone concept, it instead sweeps them into Services as the unit of interac-
tion. Given Knative’s goals of simplifying and smoothing out the developer experi-
ence, that’s quite reasonable.

 It does make it a bit trickier to get a nice readout on a Configuration by itself,
though. For that purpose, I need to drop down from kn to kubectl. The helpful
describe subcommand allows me to take a closer look at the Configuration in the fol-
lowing listing, as Kubernetes sees it.

Listing 3.10 Looking at a status with kubectl and jq

51The anatomy of Configurations
$ kubectl describe configuration helloworld-example

Name: helloworld-example
Namespace: default
Labels: <none>
Annotations: serving.knative.dev/creator: jacques@example.com ❶
 serving.knative.dev/lastModifier: jacques@example.com
API Version: serving.knative.dev/v1
Kind: Configuration
Metadata:
 Creation Timestamp: 2019-12-03T01:17:28Z
 Generation: ❷
 Resource Version: 8778016
 Self Link:

/apis/serving.knative.dev/v1/namespaces/default/configurations/helloworl
d-example

 UID: ac192f54-156a-11ea-ae60-42010a800fc4
Spec:
 Template:
 Metadata:
 Creation Timestamp: <nil>
 Spec: ❸
 Container Concurrency: 0
 Containers:
 Env:
 Name: TARGET
 Value: Second
 Image: gcr.io/knative-samples/helloworld-go
 Name: user-container
 Readiness Probe:
 Success Threshold: 1
 Tcp Socket:
 Port: 0
 Resources:
 Timeout Seconds: 300
Status: ❹
 Conditions:
 Last Transition Time: 2019-12-03T01:25:34Z
 Status: True
 Type: Ready
 Latest Created Revision Name: helloworld-example-j4gv5
 Latest Ready Revision Name: helloworld-example-j4gv5
 Observed Generation: 2
Events: ❺
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Created 14m configuration-controller Created

Revision "helloworld-example-8sw7z"
 Normal ConfigurationReady 14m configuration-controller Configuration

becomes ready
 Normal LatestReadyUpdate 14m configuration-controller

LatestReadyRevisionName updated to "helloworld-example-8sw7z"

Listing 3.11 Inspecting a Configuration with kubectl describe

52 CHAPTER 3 Configurations and Revisions
 Normal Created 6m28s configuration-controller Created
Revision "helloworld-example-j4gv5"

 Normal LatestReadyUpdate 6m24s configuration-controller
LatestReadyRevisionName updated to "helloworld-example-j4gv5"

You’ll see a lot of information here, loosely approximating the shape of the underly-
ing record. Several highlights include:

❶	Annotations, which are key-value metadata attached to the records. In this case you can see
that Knative Serving has added annotations identifying me as the user who created and last
modified the Configuration.

❷	The generation is visible here under Metadata.
❸	Our good friend spec.template.spec shows up here again.
❹	Our other good friend status is also visible too.
❺	Events is a log of changes that have occurred, reported to Kubernetes.

This last one deserves a bit of commentary. The Events list here is a mechanism that
Kubernetes provides to applications and extensions. It stores events in a nice, some-
what structured way.

3.4 The anatomy of Revisions
I was deliberately brief in my discussion of Configurations, because their primary mis-
sion is to stamp out Revisions. Keep in mind the parent/child, template/rendered
relationship between a Configuration and its Revisions. In what follows, I’ll spend
more time pointing out the various kinds of settings and fields that can be placed onto

THE KUBERNETES EVENTS SYSTEM

The Kubernetes Events system has two caveats you should be mindful of. One is that
it’s an opt-in mechanism. Software running on Kubernetes, or which extends Kuber-
netes, is under no obligation to emit events to Kubernetes. For certain software, this
Events section is blank. Knative Serving is a good citizen in this regard and will send
meaningful events for Kubernetes to record and display.

But that leads to the second problem. Even if you’re dealing with well-behaved soft-
ware that plays nicely with Kubernetes Events, there’s no guarantee that all Events
will be captured or stored or retained for long periods or protected from deletion. The
client API that software calls to pass on an Event doesn’t return errors, so well-
behaved software may be yelling into the void. Once the event reaches the API server
it’s about as safe as any other Kubernetes record. It can be deleted by another con-
troller on purpose or accidentally. And, because Events typically share resources with
all other records, Kubernetes performs rolling truncation of Events. The command
today that reports a bunch of Events may be ominously silent tomorrow.

The upshot is: the presence of an Event is meaningful, it means that the described
occurrence did occur. But the absence of an Event should not be relied on when form-
ing theories or diagnoses of behavior. It might be absent because the occurrence
hasn’t happened, or it might be absent because Kubernetes, for whatever reason,
never received or stored the event, or because Kubernetes received it but has since
deleted it. Absence of evidence isn’t evidence of absence.

53The anatomy of Revisions
a Revision. But you won’t set these directly. You’ll instead apply updates to a Configura-
tion, or to a Service, which will ultimately lead to a new Revision being stamped out.

 In practical terms, this means part of the YAML you see will be from Revisions. But
much of it will be from Configurations.

 Those of you with a Kubernetes background will begin to ask: Why does a Revision
look so much like a Kubernetes Pod?

 One reason is that Knative Serving’s mission is to improve the developer experi-
ence of Kubernetes. That doesn’t mean that the whole of Kubernetes is exposed, and
it doesn’t mean the whole of Kubernetes is hidden. It’s case-by-case.

 When a feature is provided that’s identical to the underlying system, it doesn’t nec-
essarily hurt to provide it with an identical name. For example, the serviceAccount
Name field serves the same basic purpose in Knative and Kubernetes, so why not call it
the same thing?

 As of this writing, Knative achieves this by internally storing part of the configura-
tion in a Kubernetes PodSpec. But it doesn’t expose the whole of a PodSpec, only a
selected whitelist of fields. To this whitelisted set of fields, it adds two of its own, Conta
inerConcurrency and TimeoutSeconds, which I’ll discuss in this chapter.

 Note that I said: as of writing. Knative has only whitelisted a handful of PodSpec
fields, and it only uses PodSpecs internally as an implementation convenience. But this
is an implementation detail, not guaranteed to remain stable. PodSpecs include many
knobs and dials that, it might be cogently argued, don’t belong there for any reason
other than implementation considerations. It’s possible in future that Knative will
expose other fields in a different way, or at a different level in its control hierarchy, or
introduce new concepts altogether. It will be best to ignore the implementation detail.

 Consider Revisions to be their own thing.

3.4.1 Revision basics

As you saw in chapter 2, kn gives us the basic information about a Revision. To recap,
see the following listing.

$ kn revision describe helloworld-example-8sw7z

Name: helloworld-example-8sw7z
Namespace: default
Age: 1d
Image: gcr.io/knative-samples/helloworld-go (at 5ea96b)
Env: TARGET=First
Service:

Conditions:
 OK TYPE AGE REASON
 ++ Ready 1d
 ++ ContainerHealthy 1d
 ++ ResourcesAvailable 1d
 I Active 1d NoTraffic

Listing 3.12 What kn tells you

54 CHAPTER 3 Configurations and Revisions
The key items here are the Name and the Namespace.
 By default, the name is automatically generated when the Revision is created. It

doesn’t need to be. I can use kn to create a revision with a name of my own choosing,
as shown in the following listing.

$ kn service update hello-example --revision-name this-is-a-name
... updates

$ kn revision list
NAME SERVICE GENERATION AGE CONDITIONS READY REASON
hello-example-this-is-a-name hello-example 6 10s 4 OK / 4 True
hello-example-jnspq-7 hello-example 5 24h 3 OK / 4 True

The Service name here has been baked into the Revision name by Knative Serving as
an anti-collision measure.

 Of course, I could achieve the same in YAML. First, I need to edit my Configura-
tion YAML, as shown in the following listing.

apiVersion: serving.knative.dev/v1
kind: Configuration
metadata:
 name: helloworld-example
spec:
 template:
 metadata:
 name: this-too-is-a-name
 spec:
 containers:
 - image: gcr.io/knative-samples/helloworld-go
 env:
 - name: TARGET
 value: "It has a name!"

 This section can also accept any other standard Kubernetes metadata. What does
that include? Quite a lot, including metadata added automatically by Knative. To see
more, we need to peek with our kubectl + jq waltz again. Starting with the metadata
shown in the following listing.

$ kubectl get revision helloworld-example-8sw7z -o json | jq '.metadata'

{
 "annotations": {
 "serving.knative.dev/creator": "jacques@example.com" ❶
 },
 "creationTimestamp": "2019-12-03T01:17:28Z",
 "generateName": "helloworld-example-",
 "generation": 1,

Listing 3.13 A Revision by any other name would smell as sweet

Listing 3.14 Naming the next Revision in the Configuration YAML

Listing 3.15 Revision

You can see that I’ve
added the name in a new
metadata section.

55The anatomy of Revisions
 "labels": { ❷
 "serving.knative.dev/configuration": "helloworld-example",
 "serving.knative.dev/configurationGeneration": "1",
 "serving.knative.dev/service": ""
 },
 "name": "helloworld-example-8sw7z", ❸
 "namespace": "default",
 "ownerReferences": [
 {
 "apiVersion": "serving.knative.dev/v1",
 "blockOwnerDeletion": true,
 "controller": true,
 "kind": "Configuration",
 "name": "helloworld-example",
 "uid": "ac192f54-156a-11ea-ae60-42010a800fc4"
 }
],
 "resourceVersion": "8776259",
 "selfLink":

"/apis/serving.knative.dev/v1/namespaces/default/revisions/helloworld-
example-8sw7z",

 "uid": "ac1a8358-156a-11ea-ae60-42010a800fc4"
}

Some highlights:

❶	Annotations, which together with …
❷	… labels captures a fair amount of useful information, which I’ll outline soon.
❸	The name and namespace, which essentially tell you what your Revision is called, and where it

lives in Kubernetes-land. These are the same values that kn shows as Name and Namespace.

 What about ownerReferences? It’s interesting at one level, but it’s strictly speaking
an implementation detail. Try not to fixate on it too closely. The same information is
more easily found in the annotations and labels, as shown in table 3.1.

Table 3.1 Important Labels and Annotations on Revisions

Name Type Description

serving.knative.dev/configuration label Which Configuration is responsible for this
Revision?

serving.knative.dev/configuration
Generation

label When the Revision was created, what was
the current generation number of the
Configuration?

serving.knative.dev/route label The name of the Route that currently
sends traffic to this Revision. If this value
is unset, no traffic is being sent.

serving.knative.dev/service label The name of the Service which, through a
Configuration, is responsible for this Revi-
sion. When this is blank, it means that
there’s no Service above the Configuration.

56 CHAPTER 3 Configurations and Revisions
The names of labels and annotations follow a pattern: <subject area>.knative.dev
/<subject>. This allows each of the subprojects to namespace their own annotations
without trampling each other.

3.4.2 Container basics

Much of the “meat” of what you’ll provide to a Revision lives in the containers sec-
tion. This name is confusing: Knative Serving only allows a single container to be
defined on a Revision (hence on a Configuration or on a Service). And the confusion
continues, because containers is an array, so you must use YAML syntax for an array,
as shown in the following listing.

apiVersion: service.knative.dev/v1
kind: Revision
...
spec:
 containers:
 - name: first-and-only-container
 image: example.com/first-and-only-container-image

Suppose I now add a second container by updating a Configuration in the following
listing.

apiVersion: service.knative.dev/v1
kind: Configuration
...
spec:
 template:
 spec:
 containers:
 - name: first-and-only-container
 image: example.com/first-and-only-container-image
 - name: sike-there-are-two-now
 image: example.com/second-image

serving.knative.dev/creator annotation The username who is responsible for the
Revision being created. kn and kubectl
both submit this information as part of
their requests to the Kubernetes API
server. Typically, it will be an email address.

serving.knative.dev/lastPinned annotation This is used for garbage collection.

client.knative.dev/user-image annotation This is the value of the --image parame-
ter used with kn service.

Listing 3.16 The array of one

Listing 3.17 Too many containers

Table 3.1 Important Labels and Annotations on Revisions (continued)

Name Type Description

57The anatomy of Revisions
This won’t be acceptable to Knative in the following listing.

$ kubectl apply -f example.yaml

Error from server (InternalError): error when applying patch:

... lots of angry-looking JSON here

for: "example.yaml": Internal error occurred: admission webhook
"webhook.serving.knative.dev" denied the request: mutation failed:
expected exactly one, got both: spec.template.spec.containers

The key here was “expected exactly one, got both”, which refers to my attempt to dou-
ble-dip.

 In my example, I gave the container a name. Technically this isn’t necessary. But
names are a good idea, even simple ones. Many monitoring and debugging tools now
slurp data out of the Kubernetes API; in future, others may be more Knative-centric or
Knative-aware. Either way, giving the container a name makes it easier to understand,
identify, and correlate with other systems.

3.4.3 Container images

The container image20 is the software that will ultimately be run on something, some-
where.

NOTE Container images—originally called Docker images, now better
referred to as OCI images—are primarily about the shipment of bits that will
wind up looking like a disk to your software. But they can also carry a bunch
of additional settings and instructions: environment variables, startup com-
mands, user names, and so on. Container images are interpreted and exe-
cuted by container runtimes. Docker is the best-known, including its offspring
runc and containerd. But there are now others: CRI-O, gVisor, Kata, Fire-
cracker, and Project Pacific are independent implementations that can create
identical runtime behavior, often with other desirable features.

In specifying a container, you must provide an image value. This will be a reference
that allows a container runtime to fetch the image from an image registry. I showed
this earlier in my examples of Configurations and Revisions.

 There are however two other relevant keys to know about: imagePullPolicy
and imagePullSecrets. Both of these are intended for consumption by a container
runtime.

 The imagePullPolicy setting is an instruction about “when” to pull an image to a
Kubernetes node. It is one of those annoying details which surfaces at the wrong level

Listing 3.18 Computer says nein

20 It irks me that the motivational analogy for Docker containers was shipping containers but that “container”
refers to the running process rather than the bag of bits. Instead we say, “container image”. Reflecting the analogy
back, we’d be calling container ships “containers” and calling containers “container rectangular prisms”.

58 CHAPTER 3 Configurations and Revisions
of abstraction, but which is nevertheless important to know about. You can give it
three values: Always, Never, and IfNotPresent.

 The Always policy ignores any local caching that the container runtime has and
forces a re-pull anytime the Revision is launched on a Kubernetes Node. The Never
policy prevents any attempt to pull and relies on that relevant image being pre-popu-
lated into a local cache. IfNotPresent says “use a cached copy if you have one, other-
wise pull it”.

 As a rule, you don’t need to set this. If you do set it for Configurations, IfNotPre
sent is a safe and efficient choice. If you’re setting it for a raw Kubernetes record such
as a PodSpec, then you’re in a world of hurt. I’ll return to this topic when we reach
“From conception to production”.

 The imagePullSecrets setting is another Kubernetism poking up through the
dirt. You might be used to slinging docker pull commands about willy-nilly to get
public images. This is fine and well, but not all container images are public. And fur-
ther, not all container registries are prepared to talk to unidentified strangers. A kind
of authentication is required.

 Kubernetes has a Secret record type which, among other things, can be used for
image registry credentials. Like all Kubernetes records, a Secret must have a name that
can be used to identify it and refer to it. It’s this name to which the imagePullSecrets
will refer.

 Suppose I have an image that lives in a private repo at registry.example.com.
I might have put credentials for registry.example.com into a Secret called regis
try-credentials-for-example-dot-com. Then this happens, as shown in the follow-
ing listing.

apiVersion: service.knative.dev/v1
kind: Configuration
...
spec:
 template:
 spec:
...
 imagePullSecrets:
 - name: registry-credentials-for-example-dot-com

When it pulls the container image from registry.example.com, the container run-
time will use the credentials provided by the Secret.

 As with the containers section, imagePullSecrets is an array. In a raw Kubernetes
PodSpec, this makes sense, since it allows multiple containers to be defined. Because
each container can potentially come from a different registry, it’s necessary to allow
multiple sets of credentials.

 For Knative Serving it makes less sense, because you only make a single container
definition. Unlike containers, Knative won’t impose a maximum of one entry, you
may have as many as you wish. When the container image is pulled, the relevant cre-
dentials will be used.

Listing 3.19 Can you keep a secret?

59The anatomy of Revisions
Knative Serving’s webhook component will “resolve” the container image name you
give it into a full name with a digest. For example, if you told Knative that your con-
tainer was ubuntu, it would dial out to Docker Hub to work out the full path including
the digest, for example, docker.io/library/ubuntu@bcf9d02754f659706860d04fd
261207db010db96e782e2eb5d5bbd7168388b89.

 This resolution happens right before the Revision gets created, because the web
hook component gets to act on an incoming Configuration or Service records before
the rest of Serving sees them.

 You can see the resolved digest in two different ways. Let’s first look at it in the fol-
lowing listing with kubectl and jq.

$ kubectl get revision helloworld-example-8sw7z -o json | jq '.status.imageDigest'

"gcr.io/knative-samples/helloworld-
go@sha256:5ea96ba4b872685ff4ddb5cd8d1a97ec18c18fae79ee8df0d29f446c5efe5f50"

IMAGE NAMING

Image names are, incidentally, also a mess. At the time of me writing this chapter,
all of these are legal image names:

 ubuntu
 ubuntu:latest
 ubuntu:bionic

 library/ubuntu
 docker.io/library/ubuntu
 docker.io/library/ubuntu:latest

 docker.io/library/ubuntu@bcf9d02754f659706860d04fd261207db010db96
e782e2eb5d5bbd7168388b89

More to the point, they’re identical. They all refer to the same thing, because if you
don’t specify docker.io, it’s assumed on your behalf.

“Very convenient”, you might be thinking. Well, maybe. Suppose I instead ask for
example.com/ubuntu/1804@bcf9d02754f659706860d04fd261207db010db96e78
2e2eb5d5bbd7168388b89. And further suppose that it is bit-for-bit identical with the
others. Is this the same image? The answer is: no. Not from the point of view of the
way images are named and addressed.

“But that makes sense”, you say. “They’re different URLs, so they should be treated
as different”. But what happens when you want to pull from a private repository
behind your firewall? Suddenly, everything is hard, because you (1) can’t reach
docker.io, and (2) can’t simply rename the images, because that would make them
“different”.

The problem is that no distinction is made between identity and location. Knative can-
not fully resolve this mess.

Listing 3.20 What kubectl sees

60 CHAPTER 3 Configurations and Revisions
The gcr.io/knative-samples/helloworld-go I recognise from before. The rest of it,
the @sha256:… stuff, is what Knative resolved and recorded. It’s guidance to the con-
tainer runtime that it should ask for an exact version of the container image identified
by gcr.io/knative-samples/helloworld-go. The sha256: bit tells it to verify the
exact identity by using the SHA-256 hashing algorithm. If the registry doesn’t have an
entry that hashes to that digest value, there will be a 404 error.

 kn does something slightly different.

$ kn revision describe helloworld-example-69cbl

Name: helloworld-example-69cbl
Namespace: default
Age: 4h
Image: gcr.io/knative-samples/helloworld-go (at 5ea96b)
... other stuff I'm ignoring right now

You can see (at 5ea96b) on the Image field. It’s the first 6 hexadecimal digits of the
full SHA-256 digest value.

 What about collisions? Is it possible that two images will have the same 6 first hex
digits? At one level: yes, absolutely. In terms of uniquely identifying a given image
from the universe of all images, 6 hex digits isn’t enough, because it can express
“only” millions of permutations, instead of quintillions for the full digest. But you’re
not comparing the universe of all images, only the universe of images of that base
URL. The odds of collisionmostly become noise unless you’re doing something Very
Interesting (please email me to tell me what it is). Six digits is easier to compare with
the Mark I eyeball and doesn’t cause terminal wrapping. You accept it for Git, after all.

 As it happens, resolving images to the full URL with a digest is one of the best and
smartest things Knative does on your behalf. I’ll return to this at length in “From con-
ception to production”.

3.4.4 The command

Up to now, I’ve thrown container images at Knative and magic has happened: they get
converted into running containers with little fuss. But that hasn’t wholly been due to
Knative’s efforts. Let me demonstrate with kn action, as shown in the following listing.

$ kn service update hello-example --image ubuntu

Updating Service 'hello-example' in namespace 'default':

RevisionFailed: Revision "hello-example-flkrv-9" failed with message:
Container failed with: .

Not the most helpful message. Let’s look more closely at the Revision in the following
listing.

Listing 3.21 Seeing the digest with kn

Listing 3.22 The Knative doesn’t know where to begin

61The anatomy of Revisions
$ kn revision describe hello-example-flkrv-9

Name: hello-example-flkrv-9
Namespace: default
Age: 2m
Image: ubuntu (pinned to 134c7f)
Env: TARGET=Second
Service: hello-example

Conditions:
 OK TYPE AGE REASON
 !! Ready 20s ExitCode0
 !! ContainerHealthy 20s ExitCode0
 ?? ResourcesAvailable 2m Deploying
 I Active 11s TimedOut

This is slightly more helpful. I can at least see that Ready and ContainerHealthy are
!!—that is, bad.

 !! Ready means that the container won’t come up because Kubernetes doesn’t
know how to run it. Or, rather, Kubernetes can’t guess at what it is I want to run. Here
I used ubuntu, which out of the box has hundreds of executables. Which one did
I want to bring to life? It has no idea.

 Meanwhile, ResourcesUnavailable is ?? (unknown) because, if the container
can’t come up, it doesn’t hit resource limits.

 What actually happened, though? There are two parts to the answer.

1 The container image I nominated doesn’t have a defined ENTRYPOINT21. When
the container runtime picks it up, it can’t find out what command to run by
inspecting the container image itself.

2 I didn’t set a command field on my Configuration either. If I had, it would have
been passed into the container runtime as a parameter.

Because it’s set by someone closer to production, a command setting will override an
ENTRYPOINT. Hence you get this basic set of combinations:

 ENTRYPOINT with command ⇒ command
 ENTRYPOINT without command ⇒ ENTRYPOINT
 command without ENTRYPOINT ⇒ command
 Neither command nor ENTRYPOINT ⇒ It goes kerflooie.

Your first instinct might be to try for a sneaky bash -c echo Hello, World! here, as a
cost-cutting measure. It was certainly my first thought. But it won’t do what you want
either. Knative will observe that the process exited, which violates its expectations.

Listing 3.23 What’s going down?

21 In addition to ENTRYPOINT, images can also have a CMD. They sorta kinda do the same thing and for the pur-
poses of our discussion it won’t matter, so I’m going to keep pretending that only ENTRYPOINT is relevant.

62 CHAPTER 3 Configurations and Revisions
 Most of the time you shouldn’t use command; you should rely on the ENTRYPOINT set
by the container image you nominate. This is for a number of reasons. The most
important is that it’s easier. Whomever builds the container image, whether that’s you
or someone else, probably intends for it to be used as-is. Especially if it’s going to be
used by Knative.

 If you do use command, there’s one more thing to know about: args. As you might
imagine, this is an array of arguments that will be passed to whatever command you
defined.

 But to reiterate, you probably shouldn’t be using command. This is baked into kn,
which doesn’t expose a way to set one. Later in the book I’ll be talking about how to
best build images for Knative, meaning that you can safely forget command and args
for good.

3.4.5 The environment, directly

You’ve already seen the easy way to add or change environment variables: use kn with
--env. I used it in chapter 2 to advance the “hello, world” state-of-the-art. Many sys-
tems use, or at least support, setting environment variables as a configuration mecha-
nism. Often this is an alternative to command line arguments or configuration files.

 Whether adding new variables or updating existing variables (and thereby creating
a new Revision), I use --env, as shown in the following listing.

$ kn service update hello-example --env AGAINPLS="OK"

... Output from updating the service ...

$ kn revision describe hello-example-gddlw-4
Name: hello-example-gddlw-4
Namespace: default
Age: 16s
Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
Env: AGAINPLS=OK, TARGET=Second
Service: hello-example

... Conditions ...

If this seems too easy, you can use YAML again, by setting an env. As the name sug-
gests, env sets environment variables. In Configuration YAML, the env parameter is set
on the lonely occupant of containers. See the following listing.

apiVersion: service.knative.dev/v1
kind: Configuration
...
spec:
 template:
 spec:

Listing 3.24 Adding another environment variable

Listing 3.25 More YAML again

63The anatomy of Revisions
 containers:
 - name: first-and-only-container
 image: example.com/first-and-only-container-image
 env:
 - name: NAME_OF_VARIABLE
 value: value_of_variable
 - name: NAME_OF_ANOTHER_VARIABLE
 value: yes, this is valuable too.

As you can see, you may set as many name and value pairs as you wish, the env section is
an array. It’s not required to use SHOUTY_SNAKE_CASE for name, but it’s idiomatic.

 One thing worth noting is that this is more verbose. In kn I could provide --env
KEY=VALUE and get that set for me. With the YAML approach I need to explicitly iden-
tify the key and the value.

 Remember that Knative Serving will spit out a new Revision every time you touch
the template. That includes environment variables, which may be used to change sys-
tem behaviour. Knative’s dogma is that a Revision should be a faithful snapshot. If
configuration can be changed out-of-band, then it will not be possible to later know
how a system was configured at a particular time. Yes, it’s the problem of history that
I spent so much time talking about earlier in this chapter.

 Knative’s approach isn’t without drawbacks. Firstly, updating configuration now
costs you a redeployment. If your software starts fast, that might well be fine. If, for
whatever reason, your software takes a long time to deploy or become ready, then
tweaking configuration values may become prohibitively expensive. A school of
thought (championed by Netflix, among others) is that configuration ought to be dis-
tributed independently from the code that obeys it, meaning that the deployment of
configuration changes is decoupled from the deployment of software. This enables
configuration changes to be made much more quickly.

 On the downside, history is now sprinkled into different places again, meaning
that reconstruction is back to correlation of independent timelines. If you’ve built
powerful automation and consistent tooling, this is less of a problem, but that “if” can
be a mighty big “if”. Knative’s decision emphasizes simplicity and safety by pushing all
changes through the same mechanism.

 Apart from environment variables that you set yourself, Knative Serving will inject
four additional variables. These are:

 PORT is the HTTP port your process should listen on. You can configure this value
with the ports setting (I’ll get to it before long). If you don’t, Knative will typi-
cally pick one for you. Now, it might be something predictable like 8080, but that
isn’t guaranteed. For your own sanity, only listen on the port you find in PORT.

 K_REVISION is the name of the Revision. This can be useful for logging, metrics,
and other observability tasks. Also fun for party tricks.

 K_CONFIGURATION is the name of the Configuration from which the Revision
was created.

 K_SERVICE is the name of the Service owning the Configuration. If you’re creating
the Configuration directly, there will be no Service. In that case, the K_SERVICE
environment variable will be unset.

64 CHAPTER 3 Configurations and Revisions
3.4.6 The environment, indirectly

When I said environment variables get snapshotted, I wasn’t telling the whole story
(in the degenerate argot of today’s youth, this is called “lying”). It’s true that directly
setting variables with name and value under env will be snapshotted into a Revision.
Once this snapshot is taken, the value is frozen for all time, or until the next cosmic
whoopsie in your cluster, whichever comes first (never bet against heat death).

 But there are two alternative ways of injecting environment variables: --env-from
/ envFrom and valueFrom. What they have in common is that you don’t provide the
values of variables directly, and envFrom goes further and even does away with provid-
ing a name. In both cases, the values come from either a ConfigMap or a Secret.

 Which means, to start with, you need ConfigMaps and Secrets from which to draw
values. These are Kubernetes records and kn doesn’t support them directly. To begin,
in the following listings I need to create several and ship them off with kubectl.

apiVersion: v1
kind: ConfigMap
metadata:
 name: example-configmap
data:
 foo: "bar"

apiVersion: v1
kind: Secret
metadata:
 name: example-secret
type: Opaque
data:
 password: <...redacted but it's definitely certainly not 'password123'...>

$ kubectl apply -f example-configmap.yaml example-secret.yaml
configmap/example-configmap created
secret/example-secret created

The first and easiest way to use these is with --env-from. This essentially says, “I want
you to look up this record, then create variables from what you find under data”. In
the previous examples, the ConfigMap has foo: bar and the Secret has password:
<redacted>. When I do this (see the following listing):

$ kn service update hello-example \
 --env-from config-map:example-configmap \
 --env-from secret:example-secret

... Output from update ...

Listing 3.26 Listing 3.26 The ConfigMap and Secret

Listing 3.27 Applying the YAMLs

Listing 3.28 Listing 3.28 Setting variables with kn and --env-from

65The anatomy of Revisions
Then inside the container, there will be two additional environment variables,
foo=bar and password=<redacted>.

 There’s an annoyance here, which is that it’s difficult to tell whether you’ve done
this correctly. kn is whisper silent, as shown in the following listing, on environment
variables that are injected using --env-from.

$ kn revision describe hello-example-gkfmx-7
Name: hello-example-gkfmx-7
Namespace: default
Age: 12s
Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
Env: AGAINPLS=OK, TARGET=Second
Service: hello-example

I can use kubectl describe for a more verbose look at the same information.

kubectl describe pod/hello-example-gkfmx-7-deployment-6cb9fbbd58-8mm7b
Name: hello-example-gkfmx-7-deployment-6cb9fbbd58-8mm7b
Namespace: default
... snip

Containers:
 user-container:

... snip

 Environment Variables from: ❶
 example-configmap ConfigMap Optional: false
 example-secret Secret Optional: false
 Environment: ❷
 AGAINPLS: OK
 TARGET: First
 PORT: 8080
 K_REVISION: hello-example-gkfmx-7
 K_CONFIGURATION: hello-example
 K_SERVICE: hello-example

... snip

Note that there is distinction being drawn:

❶	“Environment Variables from” validates that the ConfigMap and the Secret are being used.
❷	“Environment” shows me stuff that was injected explicitly.

If you are so inclined, it’s possible to do this in YAML with envFrom, as shown in the
following listing.

Listing 3.29 Too quiet for my liking

Listing 3.30 Did it work or not?

66 CHAPTER 3 Configurations and Revisions
apiVersion: serving.knative.dev/v1
kind: Configuration
metadata:
 name: values-from-example
spec:
 template:
 spec:
 containers:
 - image: example.com/an/image
 envFrom:
 - configMapRef:
 name: example-configmap
 - secretRef:
 name: example-secret

This mechanism is relatively convenient, because it will take everything in the Config-
Maps and Secrets you provide and stamp out environment variables. If you have soft-
ware that expects a bunch of variables set, then it’s easier to do it through ConfigMaps
than to laboriously concatenate all of the settings into a very long kn command.

 But it’s not always convenient. Sometimes you have a big bag of values in a Config-
Map or Secret that were not originally intended to be environment variables. In this
situation, you want to be able to pick and choose which values will be imported from
the available selection.

 This brings us to the mysterious contender, valueFrom. It looks much like envFrom,
but with several subtle and important differences. For one thing, it’s not exposed
through kn, so it’s all YAML from here. It also has a slightly different structure,
because of the need to be able to select specific values. The selections are achieved by
configMapKeyRef and secretKeyRef. Unfortunately they are a little bit on the chatty
side, as shown in the following listings.

apiVersion: serving.knative.dev/v1
kind: Configuration
metadata:
 name: values-from-example
spec:
 template:
 spec:
 containers:
 - image: example.com/an/image
 env:
 - name: FIRST_VARIABLE
 valueFrom:
 configMapKeyRef:
 name: example-configmap
 key: firstvalue

Listing 3.31 Using envFrom to stamp out environment variables

Listing 3.32 Using valueFrom to pull in values

67The anatomy of Revisions
 - name: PASSWORD
 valueFrom:
 secretKeyRef:
 name: example-secret
 key: password

$ kubectl apply -f example.yaml
configuration.serving.knative.dev/values-from-example created

How can I see if this worked? As with --env-from, I can’t see it through kn. Or at least,
not directly (see the following listing).

$ kn revision describe values-from-example-626da
Name: values-from-example-626da
Namespace: default
Age: 48m
Image: example.com/an/image (at 1a2bc3)
Env: FIRST_VARIABLE=[ref]
 PASSWORD=[ref]
Service:

Conditions:
 OK TYPE AGE REASON
 ++ Ready 48m
 ++ ContainerHealthy 48m
 ++ ResourcesAvailable 48m
 I Active 38m NoTraffic

You can see that there are references, butt not what they resolve to. This is one advan-
tage of the env.valueFrom approach over the envFrom approach. In this case, kn will
at least point to the fact that a variable exists.

 Now to the lying bit: I didn’t lie. What I said was completely accurate: A Revision is
a snapshot of a Configuration. What’s snapshotted isn’t the value of an environment
variable, but rather the exact configuration, which might so happen to include the
value of environment variables. When I use valueFrom, I’m snapshotting the reference
to a variable, not the value that could have been found on the other side of the refe-
rence at the moment of snapshotting.

 This opens the door back to the independent updating of configuration without
the updating of Configuration. That is, if it makes sense, you can change environment
variables by modifying the ConfigMap or Secret that a Revision’s valueFrom points to.

 There’s a caveat, which is that the change won’t be effective until the Revision is
relaunched. These references are resolved to actual values at container creation time.
They aren’t updated dynamically. If you update the ConfigMap or Secret that you
referred to, that update won’t be reflected in the running Revision.

 To pick up the change, the Revision must be scaled to zero and then relaunched.
This isn’t in your direct control and so, in practice, you shouldn’t rely on this mecha-

Listing 3.33 Applying the YAMLs

Listing 3.34 kn does not show the resolved value

68 CHAPTER 3 Configurations and Revisions
nism for fast configuration changes. In particular, you shouldn’t rely on it to rotate
credentials quickly. Your choices are:

1 To edit the Configuration to force the creation of a new Revision that takes over
from the previous Configuration, accepting the cost thereof.

2 Use an alternative mechanism for configuration key/values, such as Netflix Eureka,
that’s more proactive in managing TTLs or pushing new values to consumers, and
to use out-of-band secrets management systems such as Vault or CredHub.

Which should you choose? That’s partly a matter of taste. My advice is that you should
prefer to edit the Configuration whenever possible for data you’d put into a ConfigMap.
For a Secret, you should strongly consider using a credential manager, because keeping
secret material in environment variables leads to a fascinating kind of security hell.

 If you absolutely must have a secret or sensitive material in your environment, then
for pity’s sake use a Secret and envFrom and also do a new Revision whenever you
rotate it. Yes, I know it’s a schlep. But you want to make key material as inconvenient
to reach as possible.

3.4.7 Configuration via files

Passing configuration via the command line is easy: use args. Via the environment is
also easy: use env or envFrom. But these options have two problems.

 Firstly, certain software requires parameter files, or you might prefer parameter
files over other possibilities. For these cases, the command line and environment vari-
ables won’t do.

 Second, command lines and environment variables aren’t a safe place for secrets to
hang out. Too many tools and systems have a way of laying eyes on a command line or
an environment variable. Exfiltration opportunities abound. Can you SSH into the run-
ning container? Run ps on the container or on the Node underlying it? Do you have
monitoring system agents that extract environment variables? Which can be configured
to do so? Are you checking secrets into git? The list goes on and on (and can be sung as
a hymn to the tune of “We’re So Boned, Time To Update My LinkedIn Profile”).

 One way out of this is to take your Secrets and ConfigMaps and to expose them as
files in a filesystem. This first of all enables grumpy old software the luxury of not
changing. Second, it behaves like a filesystem, adding another permissions hoop
attackers will need to hop through. Finally, they get mounted as tmpfs volumes. They
never touch a disk and become inaccessible once the container goes away.

 Let’s start with the kn-centric view of things by mounting a secret into our con-
tainer, as shown in the following listing.

$ kn service update hello-example --mount /sikkrits=secret:example-secret

Updating Service 'hello-example' in namespace 'default':
...

Listing 3.35 Volumes of secrets

69The anatomy of Revisions
The key here is the --mount parameter, which maps from example-secret into
/sikkrits. The secret: prefix tells kn what kind of record it will be asking Knative to
map; the alternative option is configmap: for ConfigMaps.

 Now we try to see in the following listing what we’ve done using kn revision

describe.

$ kn revision describe hello-example-yffhm-12

Name: hello-example-yffhm-12
Namespace: default
Age: 3m
Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
Env: TARGET=Second
Service: hello-example
... Conditions table

It gives no sign of the secret being mounted. This is true also for ConfigMaps as well.
If I want to see what happened, I need to pop the bonnet (“crack the hood” for my
American friends) and cop a squizz (“take a look”) at the raw YAML with kubectl and
jq, as shown in the following listing.

$ kubectl get -o yaml revision hello-example-yffhm-12

apiVersion: serving.knative.dev/v1
kind: Revision
metadata:
... lots of YAML
spec:
 containers:
 name: example-container
 # ... more YAML
 volumeMounts:
 - mountPath: /sikkrits
 name: exsec-9034cf59
 readOnly: true

 volumes:
 - name: sikkrits-9034cf59
 secret:
 secretName: example-secret
... still more YAML

You’ll see here that the configuration is in two places: volumeMounts, under the lonely
member of containers, and volumes, which hangs directly off spec. These different
levels reflect YAML’s meaningful whitespace. They also reflect another Kubernetism
bubbling up into Knative. I’ll take a second to explain.

 Raw Kubernetes allows more than one container in a PodSpec. Containers might
wish to share one or more filesystems. There needs to be (1) a way to list all the volu-

Listing 3.36 The secret Secret

Listing 3.37 Volumes and Mounts

70 CHAPTER 3 Configurations and Revisions
mes that might exist and (2) a way to decide which containers can see which volumes.
Dumping everything into a single pile might be convenient at first, but down the road
it leads to bugs and security hassles.

 Knative only allows the single container, so the positioning of volumes is in a sense
inconsequential. It’s another minor rule you need to obey if and when you’re reading
or writing the YAML.

 Incidentally, the business of volumes shows up in kn in a confusing way. As well as
--mount, you’ll find there’s a --volume option as well. The help text for both is nearly
identical. Which should you use? You should stick to --mount. It does more or less
what one might expect in terms of creating a directory, putting ConfigMaps and
Secrets onto a volume and then mounting it for you.

3.4.8 Probes

Broadly speaking, software is dead or alive. When it’s alive, it’s ready or it’s not ready.
This is, at least, one of the ways Kubernetes, and therefore Knative, sees your software:
as having the properties of liveness and readiness. In raw Kubernetes, you’re given the
ability to set livenessProbes and readinessProbes on your containers. Knative
exposes this functionality, but with caveats.

 First: what are probes? A probe is a simple mechanism that Kubernetes can use to
determine the liveness or readiness of the software. Typical liveness probes include
stuff such as, “is it listening on port 3030?” or “if I run this shell command inside the
container, does it exit with code 0?”. Typical readiness probes are mostly centered on
making HTTP requests to known endpoints and expecting to get a 200 OK response.

 Superficially these might look the same. For example, both liveness and readiness
probes might be checking for an HTTP response or sniffing a TCP port. But they’re
distinct. Software that’s otherwise alive might not be ready for traffic. For example,
during a long startup, the software is alive but it’s not ready. This leads to different
treatment for each kind of probe. When liveness checks fail, Kubernetes will eventu-
ally kill the container and relaunch it someplace else. When readiness checks fail,
Kubernetes will prevent network traffic from reaching the container.

 What does it look like? See the following listing.

apiVersion: service.knative.dev/v1
kind: Configuration
...
spec:
 template:
 spec:
 containers:
 - name: first-and-only-container
 image: example.com/first-and-only-container-image
 livenessProbe:
 httpGet:
 path: /deadoralive
 readinessProbe:
 tcpSocket:

Listing 3.38 Knative Probes

71The anatomy of Revisions
The first thing to note is that you can pick between httpGet and tcpSocket for your
probes. The key fields for these two types are:

You can also set configurations that can be applied to either of the probe types. For
example, you can make a livenessProbe wait for five seconds by using initialDe
laySeconds: 5. Or you can require three successful probings in a row with success
Threshold: 3.

 If you came from Kubernetes, these features of probes are familiar to you. You also
may be wondering: what happened to port? The answer is that Knative takes control
of this value to satisfy its “Runtime Contract”. It modifies any probes so that their port
value is the same as the port value of the container itself, which will be the same as the
PORT environment variable that’s injected.

 A slight quirk of this behavior is that tcpSocket: can hang out by itself without
needing anything underneath it. I think that looks a little weird, but it’s allowed in this
case.

 If you don’t provide one or both probes, Knative Serving will create tcpSocket
probes with initialDelaySeconds set to zero. By setting to zero, Knative is telling
Kubernetes to immediately begin checking for liveness and readiness, in order to
minimize the time it takes for an instance to begin serving traffic.

 If I may be frank: probes aren’t likely to be the most pressing thing to think about.
Unless you have a proved need to adjust the defaults, you might as well save yourself
the YAML. kn sees things this way, as it doesn’t provide a means for setting or updating
probes.

3.4.9 Setting consumption limits

Knative lets you set minimum and maximum levels for CPU share and bytes of RAM.
This is another case of directly exposing the underlying Kubernetes feature, which is
called resources.

 In practice, you’re mostly going to find yourself using this to set minimum levels,
which is known to Kubernetes as requests.

 You can use kn to adjust these, as shown in the following listing.

Type Field Description Required

httpGet and
tcpSocket

host A hostname or IP address. No

httpGet path An HTTP path. Yes

httpGet scheme One of “http” or “https”, defaults to “http””. No

httpGet httpHeaders If you really need these, see the Kubernetes docs. No

72 CHAPTER 3 Configurations and Revisions
$ kn service update hello-example \
 --requests-cpu 500m \
 --requests-memory 256Mi

The 500m format refers to “milliCPUs”, or thousandths of a CPU. In this case, it’s for
500 milliCPUs, which is half a CPU. However, what “half a CPU” means depends on
where you’re running Knative, you’ll need to consult your vendor or provider docu-
mentation.

 The memory format for 256Mi is referring to mibibytes (not megabytes), which is
the value we’d typically think of as 256 megabytes (not mibibytes). It confuses me too,
but mostly you can substitute Mi for MB in your head and get it right. The same goes for
Gi / GB and (lucky you!) Ti / TB as well.

 The upper ceiling are known as limits and follow the same format, as shown in
the following listing.

$ kn service update hello-example \
 --limits-cpu 800m \
 --limits-memory 512Mi

And, of course, there’s a YAML equivalent too, as shown in the following listing.

apiVersion: service.knative.dev/v1
kind: Configuration
...
spec:
 template:
 spec:
 containers:
 - name: first-and-only-container
 image: example.com/first-and-only-container-image
 resources:
 requests:
 cpu: 500m
 memory: 256Mi
 limits:
 cpu: 800m
 memory: 512Mi

You’re less likely to make use of limits, because most of the time you want “burstable”
behavior. That means that the container process is guaranteed to get its requests allo-
cations and will “burst” to consume any spare capacity for either that the operating
system is willing to allocate it. This is a useful property for helping containers to
launch as quickly as possible, because it’s typical for launching processes to be doing a
whole bunch of preliminary bookkeeping and preparation that isn’t yet about directly
serving traffic.

Listing 3.39 Requesting CPU and RAM

Listing 3.40 Limiting CPU and RAM

Listing 3.41 Requesting and limiting in YAML

73The anatomy of Revisions
3.4.10 Container concurrency

Speaking in broad terms, the purpose of the Autoscaler is to ensure that you have
“enough” instances of a Revision running to serve demand. One meaning of
“enough” is to ask “how many requests are being handled concurrently per instance?”

And now for a rant
Serverless isn’t, I wish it was, episode eleventy jillion.

What happens if you don’t set limit and range? Nothing special, really. Left to its
own devices, Kubernetes will place a completely undefined workload any old where
and then leave it to fend for itself against other workloads landing on the same
machine. Unless you set limit and range records, Knative will accept whatever
Kubernetes dishes up as default values. Default values are configurable by the plat-
form engineers who set up and operate the Kubernetes cluster, using LimitRange
records. On GKE, for example, this is configured so that requests.cpu is 100m—set-
ting a floor CPU allocation of 10%.

I would prefer not to go down a rabbit hole here, because I happen to know it’s a deep
and elaborate rabbit hole. Somewhat-efficient packing of workloads is, after all, part
of the superhero origin story for Kubernetes, so it should come as no surprise that
there are many knobs and levers to be twisted or pulled by relevant persons. But this
necessity has led to a complicated set of rules and ideas which no developer should
be required to care about. As an exercise, look up documentation on Quality of Ser-
vice levels, then try to reassure yourself that you can reliably predict what Kubernetes
will do in times of trial and tribulation.

To be sure, Autoscalers solve part of this problem, but, as I’ll repetitively repeat in
the upcoming chapter on autoscaling, Autoscalers aren’t magical. And neither is the
Kubernetes scheduler. Both must work in a world where raw compute resources such
as CPU and RAM aren’t completely fungible. There are boundaries to what can be
done, set by the capacity of the nodes that Kubernetes is managing. A container has
to sit somewhere and its activities consume something. The mechanisms of request
and limit are there so that you can provide hints to the Kubernetes scheduler about
what that will look like. The reality that there are discrete machines leaks up through
the nice abstraction of Revisions.

It turns out that Kubernetes, the closed-loop-feedback champion, has a giant gaping
open loop at its heart: container placement. Once placed, the container is placed for
good. The Kubernetes scheduler doesn’t perform rebalancing of workloads. Reba-
lancing that does occur is as a side-effect of other causes, such as container crashes
or autoscaling.

Is there any hope for the future? Maybe. One line of attack is VM-based runtimes
such as Firecracker or Spherelets. Because these are virtual machines, they can be
more easily and robustly relocated between physical nodes without appearing to be
restarted, meaning that transparent rebalancing can occur without needing to modify
the Kubernetes scheduler. Another more science-fiction-y line of attack will be to
unbundle the resources offered by compute nodes and have directly network-con-
nected chunks of RAM, CPUs, and so on.

74 CHAPTER 3 Configurations and Revisions
 Which is where containerConcurrency comes in. It’s your way of telling Knative
how many concurrent requests your code can handle. If you set it to 1, then the Auto-
scaler will try to have approximately one copy serving each request. If you set it to 10,
it will wait until there are 10 concurrent requests in flight before spinning up the next
instance of a Revision. That is at least approximately what happens, because the Auto-
scaler has a fair few knobs and dials that affect what it does, not to mention a mode-
rate amount of internal subtlety that I’ll need to explain carefully.

 You can set a concurrency limit with kn, as shown in the following listing.

$ kn service update hello-example --concurrency-limit 1

... Output from the update ...

$ kn revision describe hello-example-pyhcm-6

Name: hello-example-pyhcm-6
Namespace: default
Age: 2m
Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
Env: AGAINPLS=OK, TARGET=Second
Concurrency:
 Limit: 1
Service: hello-example

Note the new section under Concurrency, which in turn gives a Limit. The concur-
rency limit is a hard threshold for scaling. If average concurrent requests rise above
this number, the Autoscaler will create more instances. There is also another setting,
--concurrency-target. This works differently: instead of setting a maximum level of
concurrency, it sets a desired level of concurrency. Right now, you can use --concur
rency-limit and Knative will set --concurrency-target to the same level. In the
chapter on Autoscaling, I’ll break this down further.

 Naturally, you can set this value in the YAML too, as shown in the following listing.

apiVersion: service.knative.dev/v1
kind: Configuration
...
spec:
 template:
 spec:
 containerConcurrency: 1

The YAML here does the same as --concurrency-limit, setting an upper maximum
on concurrent requests being served per instance. There isn’t an equivalent in the
YAML for --concurrency-target.

Listing 3.42 Listing 3.42 Using kn to set container concurrency limits

Listing 3.43 But is it YAML scale?

75The anatomy of Revisions
 If you don’t use --concurrency-limit or set containerConcurrency in YAML, the
value will default to 0. In turn sets up a whole bunch of other default settings that I’ll
ignore for now. What should you set it to? That’s up to your judgment. Leaving it
unset, that is, leaving it at 0, is basically OK. Autoscaling up from zero instances and
back down to zero instances will occur.

 If you have a closer insight into what concurrency makes sense for your software,
you should take advantage of it. For example, you might have a system which is
strongly thread-bound, so that a pool of four threads can handle four requests simul-
taneously. In this case it probably makes sense to set the value to four, or perhaps five
to account for other kinds of buffering.

 But remember, because we find it easier to build complex systems than to build
simple ones, performance tuning will always be a mostly empirical affair. You need to
apply load and observe performance, then adjust your settings.

NOTE Wouldn’t this be easier if it were expressed as Requests Per Second
(RPS) instead of concurrent requests? Yes, it would, and the Autoscaler can
be configured to use RPS targets instead. In the Autoscaler chapter I’ll
explain how to do that. But here’s a teaser: concurrent requests and RPS are
actually closely related anyhow. If you have one, you can typically derive the
other. I’ll explain why when we get to autoscaling.

3.4.11 Timeout seconds

Knative Serving is based on a synchronous request-reply model, and so as a matter of
necessity, it needs timeouts. The timeoutSeconds setting lets you define how long
Knative Serving will wait until your software begins to respond to a request.

 The default value is generous: five minutes. More specifically, 300. Note that this is
not a duration value, it’s an integer value. You don’t say “300s” or “5m”. You say “300”.

 On the upside, the default value is pretty much guaranteed to avoid flakiness due to
slow responses. On the downside, if you have a bug that causes stalled responses, you’re
going to see the Autoscaler busily stamping out copies as unattended requests pile up.

 This setting isn’t directly surfaced through kn, and instead has to be set using
kubectl apply. Out of the box, you can set values up to 600 — ie, ten minutes. If you
attempt to set a higher value, Knative will complain. Suppose that I want the visually-
distinct 9999 as my value. First, I’d tinker with the Configuration record in the follow-
ing listing.

apiVersion: service.knative.dev/v1
kind: Configuration
...
spec:
 template:
 spec:
 timeoutSeconds: 9999

Listing 3.44 Putting up big numbers

76 CHAPTER 3 Configurations and Revisions
Then, when I use kubectl to apply the change, the computer will say no, as shown in
the following listing.

$ kubectl -f example.yaml

error: configurations.serving.knative.dev "hello-example" could not be
patched: Internal error occurred: admission webhook
"webhook.serving.knative.dev" denied the request: validation failed: Saw
the following changes without a name change (-old +new):
spec.template.metadata.name

*{*v1.RevisionTemplateSpec}.Spec.TimeoutSeconds:
 -: "300"
 +: "9999"

expected 0 <= 9999 <= 600: spec.template.spec.timeoutSeconds

This error message is relatively helpful, in that it identifies what the offending change
was (300 to 9999), what the inoffensive expectations were (between 0 and 600), and
which component took offense (the webhook).

 The downside to this sanity check is that maybe you have a good reason for letting
something run for more than 5 or 10 minutes. Batch or batch-like scenarios, in partic-
ular, typically want to run for as long as it takes.

 Knative Serving’s timeout limit can be raised by tinkering with the installation con-
figuration. But it’s unlikely that you, as a developer, will have the authority to set such
values, because they can impact everything that runs on Knative. In these cases, you
will need to undertake the mature engineering step of engaging in a Jell-O™ fight
over whether the value should be raised (or, come to that, lowered).

Summary
 Deployment processes have improved over the years from scheduled down-

times, to blue/green deployment, to canary deployment, finally to progressive
deployment.

 Blue/green deployment works by launching the next version of software (blue)
alongside the existing version (green), then switching over traffic when the new
version is ready.

 Canary deployment works by first rolling out one or a few copies of the next ver-
sion of the software and seeing if they’re stable. If they are, further deployment,
usually blue/green, occurs.

 Progressive deployment combines elements of both blue/green and canary
deployments, focusing on progressively moving traffic from existing software to
new software.

 Knative Serving supports all these patterns of deployment.
 In addition, Serving is able to run multiple versions of software at the same

time. This is made possible using Revisions.

Listing 3.45 Nein!

77The anatomy of Revisions
 Configurations are a definition of the software you want to run on Knative Serving.
 Revisions are created when Configurations are created or changed.
 Specifically, changes to the spec.template.spec settings in a Configuration

will trigger the creation of new Revisions.
 Configuration status provides information about what Revision is currently

running.
 Revisions have a container, which must include an image. You should also pro-

vide a name for debuggability.
 You can set imagePullSecrets if you’re using private image repositories.
 You can set imagePullPolicy, but probably won’t need to.
 Knative will try to run the image you give it, first by looking for an ENTRYPOINT

on the image itself, then by looking for a command on the Revision. If these are
both missing, the Revision won’t work.

 While you can configure command and args, you probably shouldn’t. Instead,
build and use images that have ENTRYPOINTs.

 You can set environment variables directly using the env setting.
 You can also set environment variables indirectly, using envFrom. These values

can be pulled from Kubernetes ConfigMaps and Secrets.
 Variables you set using env are snapshotted by the Revision. Variables you set via

envFrom are not, meaning that they might change between Revision launches.
 You can mount configuration files easily with kn. Less easily by using kubectl

with volumeMounts and volumes.
 You can define liveness and readiness probes for your software.
 If you don’t define probes, Knative will assume that it can probe for an HTTP

server at a known port. If doesn’t get a 200 OK, Knative assumes something is
broken.

 You can set upper and lower bounds on CPU and RAM allocations for your
Revision instances. You can use kn or kubectl with requests and limits.

 You can tell the Autoscaler how many requests your software can handle simul-
taneously by setting the container concurrency.

 If you don’t set container concurrency, Knative will set reasonable defaults for
its Autoscaler behavior.

 You can tell Knative how long it should wait for your software to respond to
requests. The default is five minutes, you can set values up to 10 minutes.

References
 kubernetes.io/docs/tasks/debug-application-cluster/audit/
 github.com/salesforce/sloop
 Richardson, Alexis. “What is GitOps, Really?”. www.weave.works/blog/what-is-

gitops-really

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://github.com/salesforce/sloop
https://www.weave.works/blog/what-is-gitops-really
https://www.weave.works/blog/what-is-gitops-really

78 CHAPTER 3 Configurations and Revisions
 Anderson, Evan and Gerdesmeir, Dan. Knative Serving API Specification,
“Container”. Version 1.0.1. github.com/knative/docs/blob/master/docs/serv-
ing/spec/knative-api-specification-1.0.md#container

 kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readi-
ness-startup-probes/

 The Knative Authors. Knative Runtime Contract, “Meta Requests”. kubernetes.io
/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-
probes/

 Shan et al., “LegoOS: A Disseminated, Distributed OS for Hardware Resource
Disaggregation”. Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation. www.usenix.org/system/files/osdi18-shan.pdf

 github.com/rakyll/hey
 Accessed Wed 22 Jan 2020.

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://github.com/knative/docs/blob/master/docs/serving/spec/knative-api-specification-1.0.md#container
https://github.com/knative/docs/blob/master/docs/serving/spec/knative-api-specification-1.0.md#container
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://www.usenix.org/system/files/osdi18-shan.pdf
https://github.com/rakyll/hey
https://github.com/knative/serving/blob/master/config/core/configmaps/defaults.yaml#L49

index

A

Activator 31
and managing cold starts 35
Ingress and 35–36

Active condition 27–28
AGE, Conditions table 27
Always policy, container images 58
Autoscaler 31, 36

and concurrency limit 74
and minimal mismatch between demand

and response 34
described 34
Knative Pod Autoscaler (KPA) 34–35

autoscaling 14

B

blue/green deployment 41, 43, 76
example of 43
problems with 43

Broker 14
described 9

Build, independent project 2

C

canary deployment 76
described 44
example of 44

capacity, demand variability and 4
CloudEvent

Knative Eventing and 6
Triggers applied to 9

cluster, history of 40
Conditions table 26
ConfigMaps 64, 66, 68, 77
Configuration 20

anatomy of 46–52
changing the template 48
describe subcommand 50–52
described 13, 46
history 45
relationship between Revision and 52
Revision as snapshot of 13
spec 47
spec.template.spec settings 77
status 49–50
update and observedGeneration 50
updating 67
via files 68–70
YAML 46

consumption limits, setting 71–73
container

basics 56–57
giving name to 57
images 57–60
YAML syntax 56

container concurrency
described 73
setting limits 74–75

container images
described 57
image value 57

continuous deployment 41
continuous integration 41
control loops 17
79

80 INDEX
controller 22
and actual world 17
and desired world 17
and Reconcilers 31–32
feedback controllers 37
hierarchy 19–20
lower-level 20

controller component 31
Custome Resource Documents 2

D

default configuration, setting, webhook and 32
demand

latency-sensitivity, Knative and 5
predictability, Knative and 5

deployment 40–46
blue/green deployment 41–44
canary deployment 43–45
kn service create 24–25
Knative and progressive delivery 3
Knative Serving and 45–46
process improvement 76
progressive deployment 45–46
requests and instances 3

Deployment mechanism 39
describe subcommand 50–52

E

ENTRYPOINT 61–62
environment

ConfigMaps 64
--env 62
Secrets 64
setting variables with kn and --env-from 64
variables 62–68

environment variables 47, 57
adding another 62
alternative ways of injecting 64
as unsafe place for secrets 68
changing system behaviour 63
injecting four additional 63
stamping out with envFrom 66
TARGET 25
valueFrom 66–67

Eventing 14–15
and events from multiple sources 6
as one of major subprojects of Knative 2
Broker 9
described 2
event heterogeneity 6
wiring services together 15

events
asynchronous event flow 10
event registry 14
flow of 8–10

F

feed forward 17
feedback control loop 16

Knative Pod Autoscaler (KPA) 37
feedback loops 16–20

described 16
examples of 16
nature of 16

G

Go programming language (Golang) 28

H

hierarchical control 19–20, 25
Horizontal Pod Autoscaler (HPA) 34
httpGet, probes and 71

I

image naming, container images 59
imagePullPolicy 57, 77
imagePullSecrets 77
imagePullSecrets, container images 58
immutability, Knative and 12
inventory, demand variability and 4

K

kn revision describe 26
kn service create 24, 31
kn service list 24
kn service update, splitting traffic and 29–30
kn, CLI tool 23, 46, 53

creating service 24–25
described 24

Knative
and decomposing monoliths in small

increments 6–7
and the Law of Variability Buffering 4
autoscaling 3
deploying, upgrading, and routing 3
described 2
Eventing 3
focus on developers 2

81INDEX
kn CLI tool 24
Kubernetes and 16
major subprojects 2
PodSpec fields 53
setting consumption limits 71–73
software artifacts 2
variability 4

Knative Pod Autoscaler (KPA) 3, 34
Knative Serving

deployment and 45–46
knctl 24
kubectl 24, 59–60
Kubernetes 1

additional customization installed by Knative 2
auditing system 40
capturing history from 39
container placement 73
Events system 52
Horizontal Pod Autoscaler (HPA) 34
injecting history into 39
rebalancing of workloads 73
webhook and injecting routing and networking

information into 32
Kubernetes scheduler 73
kubernetes.io/change-cause 39

L

Law of Requisite Variety 19
Law of Variability Buffering 4
loops

control loops 17
controllers 18–19
feedback loops 16
within loops 19–20

M

MapReduce pattern, Knative and 6
Model-View-Controller (MVC) pattern 18

N

networking controllers 31
Certificates 33, 37
described 33
Ingress 33

different implementations 37
Never policy, container images 58
NoTraffic, Active condition 27

O

observedGeneration, Revision and generation
number 50

OK, Conditions table 27

P

Parallel 15
PodSpec 53
positive handoff 36
probes

defined 70
defining liveness 70
defining readiness 70
Knative probes 70
runtime contract 71

progressive deployment 45–46, 76

Q

Queue-Proxy 31

R

REASON, Conditions table 27
Reconcilers

controller component 31
described 31
naming conventions 31
two categories of 31–32

Reenskaug, Trygve 18
requests and responses, flow of 8
Requests Per Second (RPS) 75
requests, setting consumption limits and 71
resources, setting consumption limits and 71
responsibilities, dividing, Serving and Eventing

and 2
Revision 20

anatomy of 52–76
and changing environment variable 29
automatically generated name 54
basics 53–56
container images 77
described 13
generation count 49
history 45
important labels and annotations 55
key concept of 39
relationship between Configuration and 52
time travel and deployments 45

82 INDEX
Route 20
and services as combination of Configuration

and 14

S

scheduled downtime, blue/green
deployment 42–43

Secrets 64, 66, 68, 77
Sequence 15
Service 20
Serving 13–14

and improving developer experience of
Kubernetes 53

and injecting additional environment
variables 63

and request/reply design 15
as one of major subprojects of Knative 2
components 30–36

<$endtrange 32
Activator 34–36
Autoscaler 34–36
networking controllers 33
Queue-Proxy 36
Reconcilers 31
webhook 32–33

described 2
information completeness and validity 32
Knative Pod Autoscaler (KPA) 34
Reconcilers 31–32
timeout limit 76
time-travel capability 40

Single Responsibility Principle 19
Sloop, history-visualization tool 40
Source, described 14

T

tcpSocket, probes and 71
time

as Knative's default strategy for buffering 5
demand variability and 4

timeoutSeconds setting, Serving based on
synchronous request-reply model 75

--traffic parameter 29
traffic, routing portions of 7
traffic, splitting 29–30

even four-way split 30
implicit zero traffic level 30
targeting @latest 30

Trigger
and applying to CloudEvents 9
and incremental composition of event flows 9

TYPE, Conditions table 27

V

variability
and buffering demand variability 4
Knative and supplying 5

W

webhook 30
container images 59
described 32
impossible configurations and 33
including digest 33
origin of the name 32
principal roles 32

Y

YAML documents 2

	contents
	1 Introduction 1
	2 Introducing Knative Serving 23
	3 Configurations and Revisions 38

	1 Introduction
	1.1 What is Knative?
	1.1.1 Deploying, upgrading, and routing
	1.1.2 Autoscaling
	1.1.3 Eventing

	1.2 So what?
	1.3 Where Knative shines
	1.3.1 Workloads with unpredictable, latency-insensitive demand
	1.3.2 Stitching together events from multiple sources
	1.3.3 Decomposing monoliths in small increments

	1.4 It’s a hit
	1.4.1 Trouble in paradise

	1.5 What’s in the Knative box?
	1.5.1 Serving
	1.5.2 Eventing
	1.5.3 Serving and eventing

	1.6 Keeping things under control
	1.6.1 Loops
	1.6.2 Loops within loops

	1.7 Are you ready?
	Summary
	References

	2 Introducing Knative Serving
	2.1 A walkthrough
	2.1.1 Your first deployment
	2.1.2 Your second deployment
	2.1.3 Conditions
	2.1.4 What does Active mean?
	2.1.5 Changing the image
	2.1.6 Splitting traffic

	2.2 Serving Components
	2.2.1 The Controller and Reconcilers
	2.2.2 The webhook
	2.2.3 Networking controllers
	2.2.4 Autoscaler, Activator, and Queue-Proxy

	Summary
	References

	3 Configurations and Revisions
	3.1 Those who cannot remember the past are condemned to redeploy it
	3.2 The bedtime story version of the history of deployment as a concept
	3.2.1 The blue/green deployment
	3.2.2 The canary deployment
	3.2.3 Progressive deployment
	3.2.4 Back to the future

	3.3 The anatomy of Configurations
	3.3.1 Configuration status
	3.3.2 Taking it all in with kubectl describe

	3.4 The anatomy of Revisions
	3.4.1 Revision basics
	3.4.2 Container basics
	3.4.3 Container images
	3.4.4 The command
	3.4.5 The environment, directly
	3.4.6 The environment, indirectly
	3.4.7 Configuration via files
	3.4.8 Probes
	3.4.9 Setting consumption limits
	3.4.10 Container concurrency
	3.4.11 Timeout seconds

	Summary
	References

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	Y

