
REPORT

Responsible
Microservices
Where Microservices
Deliver Value

Nathaniel Schutta

Compliments of

https://tanzu.vmware.com/labs?utm_campaign=oreilly-ebook-vmware-tanzu-schutta&utm_source=oreilly&utm_medium=sponsorship

Nathaniel Schutta

Responsible Microservices
Where Microservices Deliver Value

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-08526-3

[LSI]

Responsible Microservices
by Nathaniel Schutta

Copyright © 2020 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield
Development Editor: Melissa Potter
Production Editor: Kate Galloway
Copyeditor: Piper Editorial, LLC

Proofreader: Piper Editorial, LLC
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: O’Reilly Media, Inc.

August 2020: First Edition

Revision History for the First Edition
2020-08-14: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492085287 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Responsible
Microservices, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the author, and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions, includ‐
ing without limitation responsibility for damages resulting from the use of or reli‐
ance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of oth‐
ers, it is your responsibility to ensure that your use thereof complies with such licen‐
ses and/or rights.

This work is part of a collaboration between O’Reilly and VMware Tanzu. See our
statement of editorial independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492085287
https://oreil.ly/editorial-independence

Table of Contents

1. The Microservice Revolution. 1
How Did We Get Here? 2
What Is a Microservice? 5
Microservices Are a Tool 6

2. Multiple Rates of Change. 9
Parts of Your System Evolve at Different Rates 9
How Do We Know What Changes Faster Than the Rest? 11
Applying the Strangler Pattern 12

3. Independent Life Cycles. 15
Always Be Changing 15
Independent Life Cycles Boost Developer Productivity 17
From Code to Prod: A Tale of Two Life Cycles 17
Hypothesis-Driven Development 19
Deployment Pipelines 20
Move Fast and Fix Things 22

4. Independent Scalability. 25
The Monolith Forced Decisions Early—with Incomplete

Information 25
Not All Traffic Is Predictable 26
Scale Up Where It Is Needed 27
Monitoring for Fun and Profit 28
All Services Are Equal (But Some Services Are More Equal

than Others) 31
Modernize Your Architecture to Use Modern Infrastructure 32

iii

5. Failure Isolation. 33
No Service Is an Island 33
Architectural Reviews 35
Failures Find a Way 36
Engineering Discipline 40

6. Indirection Layers. 41
Abstract Away External Dependencies 41
Managing Your Services 43
The Importance of Architecture 44

7. Polyglot Technology Stacks. 47
We’re a Java Shop 47
One Size Fits None 48
Paved Roads 49
They’re Called Microservices 51

8. The Importance of Culture. 53
Culture Impacts Everything 53
Evolving Your Organization 55

9. Migrating to Microservices. 57
Modular Monoliths, Macro Services, Oh My! 57
Decomposing the Monolith 59
Next Steps 61

iv | Table of Contents

1 For more on this concept, see The Mythical Man Month by Frederick P. Brooks Jr.
(Addison-Wesley).

CHAPTER 1

The Microservice Revolution

These days, you can’t swing a dry-erase marker without hitting
someone talking about microservices. Developers are studying Eric
Evans’s prescient book Domain-Driven Design (Addison-Wesley).
Teams are refactoring monolithic apps, looking for bounded con‐
texts and defining a ubiquitous language. And while there have been
countless books, videos, and talks to help you convert to microservi‐
ces, few have spent any appreciable time asking if a given application
should be a microservice.

There are many good reasons to use a microservices architecture,
but there are no free lunches. The positives of microservices come
with added complexity. Teams should happily take on that complex‐
ity, provided the application in question benefits.

This report will give you a set of principles you can use to help focus
your efforts and avoid wasting your time. As you read through the
following pages, ask if your application benefits from a given princi‐
ple. If you answer “yes” for one or more of the following principles,
the feature is a good candidate to be a microservice. If you answer
“no” for every principle, you are likely introducing accidental com‐
plexity into your system.1 But why are so many companies adopting
microservices in the first place? What even is a microservice?

1

https://oreil.ly/thJ0v
https://oreil.ly/I5K6S
https://oreil.ly/JDsHl
https://oreil.ly/90O3G
https://oreil.ly/VfI_z

How Did We Get Here?
Odds are you’ve noticed a major shift in how your organization
approaches infrastructure. Servers were once homegrown—a
bespoke artisanal approach. And while you may enjoy the idiosyn‐
cratic when it comes to your morning coffee or your favorite food
truck, unnecessary variables in your infrastructure lead to sleepless
nights. During this “Paleolithic” era of software, servers were a very
expensive resource, forcing developers to deploy as many apps to
the same hardware as possible. Doing so may have placated the
accountants, but it introduced its own set of problems.

With shared resources, one application’s bug could impact every
application on a given box. Upgrades to common libraries were con‐
strained by the slowest-moving system in the environment, making
currency projects a frustrating series of freezes and testing. Organi‐
zations often kicked the can down the street rather than deal with
vital (but not flashy) currency projects. Afraid of breaking anything,
many companies poured proverbial concrete over their infrastruc‐
ture, allowing fear to lead them down a dark path. Who knew there
was such a thing as #YodaOps?

Fear is the path to the dark side. Fear leads to anger. Anger leads to
hate. Hate leads to suffering.

—Yoda, Star Wars Episode I: The Phantom Menace

Delivering code to production was its own source of frustration as
well. As an application moved from dev to test and beyond, things
that worked in one region were just as likely to stop working in a
different region. You could spend days pounding your head against
the wall trying to determine what, exactly, was amiss, wasting count‐
less hours that could have been better spent delivering features and
functionality.

2 | Chapter 1: The Microservice Revolution

2 See Thinking Architecturally, another report from O’Reilly, for more on this concept.

What Would You Say Is Different Here?
Like nearly every developer, I’ve fallen victim to the “works here
but not there” conundrum multiple times in my career, but one case
in particular stands out. Our project was cruising along until we got
to the customer test, only to be foiled. After a couple of weeks of
meetings, emails, and escalations, we finally had an answer. The dif‐
ference? The order in which the patches were applied. It was at this
point that I seriously wondered what life choices had led me to this
place.

The software industry doesn’t stand still; in fact, it seems to be in
constant flux.2 Infrastructure is a different game today, and servers
are commodities. Rather than spend countless hours troubleshoot‐
ing a bad server, it is faster to just destroy the instance and spin up a
fresh one. With public cloud providers, containers, and app plat‐
forms, you now bundle your application with everything it needs
and move that abstraction from server to server. In truth, you prob‐
ably aren’t moving anything, you’re just updating a routing table.

With these higher-level abstractions, if it works in dev, it will work
in test because you are working with the exact same thing, eliminat‐
ing an entire class of bugs from the procedure. It also liberates devel‐
opment teams—they are no longer subject to the tyranny of the
slowest-moving application. If your application needs a spiffy new
library version, go ahead, you aren’t affecting anyone else! You can
focus your attention on solving problems for your customers, not
undifferentiated heavy lifting.

Your teams can deliver in days or weeks instead of months or years,
allowing you to be far more responsive to business changes. You can
run A/B tests and perform hypothesis-driven development instead
of hazarding guesses and arguing in the project room. Disruption
affects every industry, and you can no longer afford to rely on
“We’ve always done it that way.” You must evolve just as one large
bank did (described in Figure 1-1). If an organization in a heavily
regulated field such as banking can adapt, so can you.

How Did We Get Here? | 3

https://oreil.ly/mKU-D
https://oreil.ly/fnQH2

Figure 1-1. You can move to thousands of deploys a month

None of these benefits magically happen; they are the culmination of
cloud environments, cloud native architectures, DevOps, and the
cultural shift inherent in any transformative technology. The transi‐
tion takes time, but the results speak for themselves, allowing you to
deliver business critical software consistently and repeatedly.

Microservices are ultimately a reaction to plodding monoliths and
heavyweight services, as well as modern cloud environments. Mono‐
liths suffer from a lengthy list of problems, starting with long ramp-
up times for new developers, all the way to build times measured in
phases of the moon. With years (or decades) of technical debt, mod‐
ularity breaks down over time, making it very difficult to refactor
and add vital new features. Scaling typically means adding capacity
for the entire application, not just the pieces that needed it, leading
to single-digit resource utilization. Out of this frustration was born
the microservice.

4 | Chapter 1: The Microservice Revolution

3 According to some people, microservices are SOA done right.

What Is a Microservice?
There are nearly as many definitions of a microservice as there are
developers touting them as miracle cures. Before delving further, the
key definition is the one inside the walls of your organization.
Whether it adheres to the Platonic ideal form of a microservice isn’t
nearly as important as getting everyone on the same page. There is a
reason why a glossary is often one of the most important artifacts in
any project room.

What’s in a Name?
If you’ve already debated tabs versus spaces, consider touching off a
discussion around the definition of a microservice. Consider
removing sharp objects—it may devolve rapidly. Microservices
really are in the eye of the beholder!

Ultimately, microservices are a reaction to monoliths and heavy‐
weight service oriented architectures (SOA), as well as the capabilities
of cloud environments.3 The issues with poorly structured mono‐
lithic architectures are legion, from low developer productivity
caused by massive codebases to the inability to target compute
resources to the bits that need more performance, there are no
shortage of headaches. Software is not immune to the second law of
thermodynamics; over time, the modularity of the monolith breaks
down and it takes longer and longer to add new features and
functionality.

Some are partial to defining a microservice as any service built and
maintained by a two-pizza team. Personally, I am a fan of defining
them as something that can be rewritten in two weeks or less, since
that reminds us that microservices should be, well, small. Of course,
there is no stock answer to the question of how microservices
should be defined—it depends on the volatility of the services in
question. While I support two-pizza teams, that definition won’t
help you determine just how many services said team can support. If
the microservices are stable, a two-pizza team might be able to
support ten or twenty of them. However, if the services are

What Is a Microservice? | 5

https://oreil.ly/fcWAj
https://oreil.ly/s15cm
https://oreil.ly/wf8kE
https://oreil.ly/B2eEF
https://oreil.ly/B2eEF

4 See Eric S. Raymond’s “Basics of the Unix Philosophy” for more.
5 In case your Norse mythology is a little rusty, Mjölnir is Thor’s hammer. You may recall

that it was destroyed by Hela (in the Marvel Cinematic Universe, at least).

constantly changing, the exact same team might struggle with more
than five!

Rather than debate designations, think in terms of characteristics.
Microservices are suites of small, focused services that embody the
Unix ethos of small, focused tools that do one thing and do it well.4

Microservices should be independently deployable, independently
scalable, and free to evolve at different rates. Developers are free to
choose the best technology to build services around business capa‐
bilities. In a nutshell, microservices are an example of what I refer to
as the zeroth law of computer science—high cohesion, low coupling—
applied to services.

Microservices Are a Tool
At the end of the day, microservices are a tool and it is up to you to
properly apply them. It is just another approach. An architectural
style. A pattern. It is not Mjölnir, and it will not solve every problem
you’ve ever had on a given project.5 If you’ve ever been to a home
improvement store, you might have noticed there is an entire aisle
full of hammers. Some are smaller, some are larger; some have
smooth faces, some knurled. Some include a handy hook to help
you pull out the nail you inevitably bent, while others will help you
tear down a wall with minimal fuss.

The expert knows when to pick up which hammer, while the novice
often falls in love with the first hammer they ever used. If you are
demolishing a shed, a sledgehammer is your friend. While it will
help you get rid of that eyesore, using it to put up some beautiful
maple trim will probably result in a trip to urgent care. You face a
similar choice with your applications. Are microservices useful?
Absolutely. Are they right for every situation? Of course not.

6 | Chapter 1: The Microservice Revolution

https://oreil.ly/O-IpM

Microservices really do offer some impressive benefits. But they
come at a price. Don’t pay the complexity tax unless you get some‐
thing in return. In other words, no, not everything should be a
microservice! Use them where they make sense. Use them where
they add value. If you need one (or more) of the principles that fol‐
low, go forth and prosper! If not…well, there’s always serverless.

Microservices Are a Tool | 7

https://oreil.ly/LOQEe

CHAPTER 2

Multiple Rates of Change

Do parts of your system need to evolve at different speeds, or in dif‐
ferent directions? In any system, some modules are hardly touched
while others seem to change every iteration. Separating them into
microservices can be useful, allowing each component to have inde‐
pendent life cycles.

Parts of Your System Evolve at Different Rates
It should be obvious to anyone involved in a software project that
not every part of your system evolves at the same rate. Some compo‐
nents are changed constantly while others haven’t been modified in
weeks or months, even years. If aspects of your system evolve at dif‐
ferent speeds, you might need microservices. To illustrate, let’s pick
an example—say, a monolithic online retail app, as described in
Figure 2-1.

9

1 Let’s be honest, it’s probably tied to some legacy warehouse system you have no power
to change.

Figure 2-1. For your consideration…the Widget.io Monolith!

Odds are, the cart module probably hasn’t changed much and the
inventory system is really stable.1 Meanwhile, your product owner
constantly wants changes to the recommendation engine, and no
one has ever said “Our search is too good.” In the monolith, every‐
thing has to move at the same rate, which is part of the rationale
behind quarterly release cycles.

Today we have options. Splitting those two modules—recommenda‐
tion engine and search—into microservices would allow the respec‐
tive pieces to iterate at a faster pace. This approach will help you
quickly deliver business value. Separating the things that change
more frequently results in something like Figure 2-2.

Figure 2-2. Recommendation engine and search as standalone
microservices

10 | Chapter 2: Multiple Rates of Change

2 From Memoirs of the Life, Writings, and Discoveries of Sir Isaac Newton by Sir David
Brewster (1855): “I do not know what I may appear to the world, but to myself I seem
to have been only like a boy playing on the seashore, and diverting myself in now and
then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean
of truth lay all undiscovered before me.”

How do you identify volatile components in your systems? What
techniques can you use to identify the best possible microservice
candidates?

How Do We Know What Changes Faster Than
the Rest?
In this fictitious example, we can simply declare, “These modules
change a lot.” But that won’t fly in the real world. How do you find
parts of your application that evolve at different rates? More specifi‐
cally, how do we find the components that change far faster than the
rest?

Normally software developers skew logical, but let’s use our emo‐
tional and rational brains in concert. Odds are, you have an inkling
about the part of your app most likely to benefit from faster itera‐
tion. Trust your gut instincts!

But you shouldn’t rely entirely on feelings. You can use your source
code management system to give you a “heat map” of your code.
With a Git repository, for instance, you can run git log with a few
command-line options piped through common Linux tools. You can
generate a top ten list of most committed files with a command like
this:

git log --pretty=format: --name-only | sort | uniq -c
| sort -rg | head -10

Don’t be surprised when changelog.txt shows up at the top of the
list! You will have to sanity-check the results, but it gives you a place
to start. Now it is time to perform a bit of software archeology. You
need to root around your codebase looking for (to paraphrase Isaac
Newton) smoother pebbles and prettier shells.2 This work hearkens
back to the concept of churn, first introduced by Michael Feathers.
Churn is a way of informing decisions on refactoring. When you
look at file churn for a given project, you are almost always going to
see a long tail distribution. You can visualize what this histogram

How Do We Know What Changes Faster Than the Rest? | 11

https://git-scm.com
https://oreil.ly/gkK_o
https://oreil.ly/XwkiF

3 Fowler, “StranglerFigApplication,” June 29, 2004.

looks like—some files change constantly, while others haven’t been
touched since the initial commit. Based on Feathers’s work, Chad
Fowler created Turbulence, a visualization into the churn versus
complexity of a codebase.

There are also new “code forensics” tools like CodeScene that can
yield deeper insights into your projects. CodeScene identifies hot
spots in your code, shining a bright light on areas that will be hard
to maintain. The results also underscore the parts of your app that
could be at risk if a specific developer leaves. You can bring tools like
this to bear on your projects, using them to help you identify the
prime candidates for a microservice transformation.

But you don’t have to add yet another piece of software to your
world—just look at the last commit on GitHub. You’ll inevitably find
that some files were last modified a few moments ago, while others
haven’t been updated in years. If a file hasn’t been touched since the
last Super Blue Blood Moon Eclipse, the rate of change factor won’t
push it into a standalone microservice pattern. But if you see a set of
files that appear to always be changing, you should dig deeper in
those areas.

Your bug tracker and your project management tools will also help
you zero in on likely candidates. Defect density might point you in
interesting directions. It also makes sense to review the stories in
your backlog. Which modules seem to have a disproportionately
high amount of attention? Those are worth exploring.

Using these tools and your instincts, you have an idea what compo‐
nents change more often than others. Now you need to decouple
them from the rest of the application. How do you do that?

Fortunately, there’s a proven technique for this exact task.

Applying the Strangler Pattern
The strangler pattern was introduced by Martin Fowler as a way of
handling rewrites of legacy systems.3 Fowler was inspired by the
strangler vines he encountered on a trip to Australia. These vines
spread seeds in the branches of fig trees and then gradually work

12 | Chapter 2: Multiple Rates of Change

https://oreil.ly/0Ow2Z
https://oreil.ly/UFHq3
https://codescene.io/about
https://oreil.ly/1eWGX

4 Good metaphor for software projects, no?

their way down to the soil, all the while gradually killing their host
tree.4

Applied to software, the approach suggests that an abrupt “rip and
replace” upgrade is fraught with peril. Which it is! Instead, the
strangler pattern argues that we should build the new system around
the edges of the old, gradually retiring the legacy app over time.

The strangler pattern greatly reduces project risk. Instead of rolling
the dice on a big bang cutover, you incrementally improve the appli‐
cation over time. A series of small, easily digestible steps increases
your odds of success. Your teams can also deliver business value on
a regular cadence (something customers really appreciate), while
carefully monitoring progress toward the ultimate goal of monolith
retirement.

You can take the strangler pattern a step further with a data-driven
approach. That chunk of the app you’ve identified for refactoring?
There’s a good chance you don’t understand every aspect of what
that module does. With years of patches, fixes, and undocumented
changes, no one likely knows the entire story of what the system is
supposed to do. Rather than risk incomplete understanding—and
thereby injecting errors into a critical business system—you can rely
on real-world data to guide you.

The data-driven strangler introduces a proxy layer between the
client (phone, web browser, another app) and the legacy system.
This proxy layer intercepts all requests and responses, logging the
results as described in Figure 2-3. The proxy layer pays off for you in
two ways. First, it provides vital information about how the current
system behaves, giving you request/response data you can use to
generate tests. Second, this data allows you to verify the new func‐
tionality, ensuring it matches the legacy system.

Applying the Strangler Pattern | 13

https://oreil.ly/sCaCB
https://oreil.ly/sCaCB
https://oreil.ly/P5zqb

5 Don’t be surprised if the old system is actually wrong!

Figure 2-3. Deploy the data-driven strangler to reduce the risk of
replacing heritage functionality

In some situations, the new microservice could even be run in paral‐
lel with the legacy system, with the proxy layer routing the request
to both the heritage monolith and the new microservice comparing
the results. If the results match, so much win! But if the results con‐
flict, the proxy can switch over to the legacy system by default,
recording the miss for further inspection.5 Based on the data, you
can continue to enhance the new microservice while at the same
time adding test cases to your test suite for the new codebase. This
approach further improves your confidence in the new code.

To channel Obi-Wan Kenobi, you’ve taken your first step into a
larger world. Your instincts—along with some code archeology—
will help you identify multiple rates of change in your systems. Pull
out your volatile features as their own microservice. The end result
will be simpler code, allowing faster development that’s also lower
risk. Further, when you apply the strangler pattern, you can confi‐
dently maintain existing functionality without introducing new
bugs. Not only can these microservices evolve at their own rate, but
they can also benefit from independent life cycles.

14 | Chapter 2: Multiple Rates of Change

https://oreil.ly/oHqii
https://oreil.ly/oHqii

CHAPTER 3

Independent Life Cycles

For a variety of reasons, you often find parts of your application that
need their own commit-to-production flow. Let’s consider this
dynamic and how microservices can help. Independent life cycles are
a larger concept that is arguably a superset of multiple rates of
change, allowing you to be nimbler in today’s disrupted marketplace.

Always Be Changing
Monoliths are big ships and they don’t turn on a dime. While that
might have been workable a long time ago in a galaxy far, far away,
today you must be able to respond to an increasingly dynamic envi‐
ronment. Speed matters, and your business partners may not be able
to wait for a quarterly release window. Standalone microservices can
have their own life cycle with their own repository and a separate
deployment pipeline containing the appropriate tests and code qual‐
ity scans allowing you to capitalize on new opportunities.

The semiannual release cycle doesn’t cut it anymore. A monolithic
approach usually hinders our ability to deliver quickly, run A/B
tests, and learn from users. Chances are, you are being asked to
innovate in days or weeks, certainly not months or years. Disruption
impacts every business today, and your industry is not immune.
Returning to the Widget.io example, what happens if your business
partners identify a new opportunity? Can you get that functionality
into production sooner rather than later? You could tell them to just
wait until the next release, but the business opportunity might van‐
ish. Instead, consider the approach described in Figure 3-1. Giving

15

1 Besides, the code is self-documenting.

the new functionality its own life cycle frees it from the schedule tyr‐
anny of the slowest-moving part of the application.

Figure 3-1. Split the Project X functionality into a standalone
microservice

In our hypothetical scenario, our business leadership identified a
new opportunity that requires speed to market. A typical monolith
wouldn’t allow us to iterate fast enough, so we made Project X its
own microservice. Project X has its own code repository and
deployment pipeline, and therefore an independent life cycle. This
will help us evolve Project X as we learn more about the business
opportunity.

But speed to market isn’t the only reason you might want an inde‐
pendent life cycle for a module. It can dramatically increase devel‐
oper productivity too.

Documenting Services
Documentation, much like the cobbler’s children, often gets neglec‐
ted on software projects. Developers typically prioritize features
and functionality.1 Word processors don’t lend themselves to a
deployment pipeline, and updating documentation can seem like
yet another dollop of busywork. Spring REST Docs takes your
handwritten Asciidoctor (or Markdown) text and combines it with
autogenerated snippets from Spring MVC Test, WebTestClient, or
REST Assured.

16 | Chapter 3: Independent Life Cycles

https://oreil.ly/g21Cs
https://asciidoctor.org
https://oreil.ly/8qJX9
https://oreil.ly/5tS8W
http://rest-assured.io

Asciidoctor produces HTML, which you can style and format to
your heart’s content. Deriving information from tests means your
documentation naturally evolves with your codebase. Spring REST
Docs lets you focus on describing the requests and responses of
your API, allowing you to change implementation details without
having to nuke and pave your documentation.

Independent Life Cycles Boost Developer
Productivity
Very few developers would say monoliths help them be productive.
They slog through dictionary-length developer setup guides. Build
times are measured with a sundial. It can take months for a devel‐
oper to get up to speed on a project. With a smaller scope, a devel‐
oper can get their head wrapped around a microservice in a day or
two. Builds finish in a few minutes (or less). If the build gets broken,
engineers know right away and they can take immediate action to fix
the issue.

Smaller codebases also mean testing a microservice can be far sim‐
pler. Tools like Spring Cloud Contract can help you ensure your
services are good citizens and play well with others. You won’t be
bogged down with the monolith’s 80-hour (manual!) regression test
suite. Instead, build a set of fine-grained tests against a microservice
that can be executed on every commit. Rather than a one-size-fits-
none approach to testing, you can bring the right tools and techni‐
ques to bear on the individual circumstances of a given
microservice. You can subject your microservices to constant scru‐
tiny instead of a one-off performance test. Imagine how this boosts
code quality.

From Code to Prod: A Tale of Two Life Cycles
Let’s compare monoliths and microservices as they relate to the life
cycle; more specifically, how new code goes from a developer’s lap‐
top to production.

In the not too distant past, many IT organizations took a singular
approach to software development. Projects plodded along in typical
waterfall fashion, with quarterly or annual releases. Perhaps a review
board (or three) had to sign off before code could go to production.

Independent Life Cycles Boost Developer Productivity | 17

https://oreil.ly/5e42U

Seems logical enough, right? But it often led to sleepless nights, long
weekends, and windowless war rooms filled with weary people. A
shared life cycle meant every module was constrained by whichever
one had the longest commit-to-production flow. It also meant every
line went through the same process regardless of what stages were
most applicable.

Microservices are all about flexibility, including customized deploy‐
ment pipelines. You are no longer forced to push every line of code
through the exact same sieve. In the same way microservices allow
you to choose the best technology for the job, you also have the free‐
dom to use the right mix of tests, linters, and code-quality scans for
each microservice.

Multiple Owners
While not a technical issue, if your system has multiple independ‐
ent, autonomous business owners, then it has two distinct sources
of change. Unfortunately, this situation often results in conflicts.
With microservices, you can achieve independent life cycles and
please these different constituencies.

Similarly, if an application is owned by multiple teams, the resulting
coordination cost for them working on a single system can be high.
Instead, define APIs for them. From there, each team can build an
independent microservice using Spring Cloud Contract or Pact for
consumer-driven contracts testing.

Fine-grained components—microservices—also make it simpler for
you to adhere to your architectural goals. As you refactor your code,
it is important that you don’t violate a key aspect of your architec‐
ture. But how do you ensure that across multiple developers, work‐
ing in small, independent teams? Fitness functions to the rescue!
Arising out of evolutionary computing, fitness functions test the
mutation of an algorithm to see if a given change is an improvement
or not, ensuring that, over time, the algorithm becomes better and
better. As it turns out, this same approach can be used in architec‐
ture to allow you to test your architecture as features are added and
code is refactored.

18 | Chapter 3: Independent Life Cycles

https://oreil.ly/U1ZWS
https://oreil.ly/CtKMl
https://docs.pact.io
https://oreil.ly/K4BGW

2 For more on evolutionary architectures, see Building Evolutionary Architectures by Neal
Ford, Rebecca Parsons, and Patrick Kua (O’Reilly), and the Building Evolutionary
Architectures website.

For architecture, fitness functions are ultimately about protecting
the quality attributes of your system, performance, reliability,
simplicity, and so on. Fitness functions are limited only by your
imagination, but you might write a test that makes sure service calls
respond within a given time frame, that there are no cyclic depen‐
dencies in your codebase, or that the number of timeouts doesn’t
exceed a given threshold. Ideally all of your fitness functions are
automated, but don’t be surprised if some things have to be manual.

Microservices can make it simpler to find relevant fitness functions.
Instead of a one-size-fits-all approach, you can select the proper set
of fitness functions for each microservice to ensure that your design
evolves in a way that supports key quality attributes.2

Hypothesis-Driven Development
Independent life cycles make your life better. They also allow you to
make more informed decisions about how your software should
evolve. Throughout my career, I have had countless debates with fel‐
low software engineers and customers about possible solutions for
various scenarios. And while there were always strong opinions,
data was hard to come by. We had to make a decision based on what
little we knew and hope for the best.

Of course, even if we were wrong, lengthy deployment cycles meant
it would be months before we could alter course. These constraints
forced us to be conservative. We couldn’t afford to try something
unconventional, lest it alienate our users.

Prediction is very difficult, especially if it’s about the future.
—Niels Bohr (attributed)

The scientific method is straightforward. Form a hypothesis based
on your observations, then design an experiment to test that theory.
What if you could apply a bit of high school science to your soft‐
ware? By using hypothesis-driven development, you can make far
better decisions about your software. Independent life cycles make it
possible!

Hypothesis-Driven Development | 19

https://oreil.ly/TxKdz
http://evolutionaryarchitecture.com
http://evolutionaryarchitecture.com

Taking its cue from a traditional user story, you can formulate some‐
thing like this:

We believe <this change>
Will result in <this outcome>
We will know we have succeeded when <we see X change in this
metric>

For example:

We believe adding a distributed cache
Will result in faster startup times
We will know we have succeeded if startup time is less than 15
seconds

And, you can often turn that structure into a fitness function that
you regularly execute against your code.

When a given service has its own commit-to-production flow, you
can run multiple experiments reacting to actual results instead of
spending countless hours arguing about the future. Today, compa‐
nies like Google and Amazon run multiple experiments daily (some‐
times hourly!). They constantly A/B test. The result: hard data about
the impact of a given design on key metrics. What customer doesn’t
want constantly improving products aligned ever more closely with
their needs? More practically, what software organization doesn’t
want to deliver this kind of service? This is another reason why
microservices are so popular.

While it may be easy enough to want independent life cycles, it can
be daunting to actually achieve it. Regardless of why you are using
microservices, you will need a heavy dose of automation in your
build process. You need deployment pipelines.

Deployment Pipelines
Modern distributed architectures, along with cloud environments,
give you a powerful toolkit to build applications that quickly deliver
business value. You can no longer afford a plodding release cycle
with nebulous review boards and heavyweight gates slowing devel‐
opment to a crawl. But how can you ensure releases don’t bring
down production? You need to move fast, but you cannot afford to
break things—you need deployment pipelines. Leveraging continuous

20 | Chapter 3: Independent Life Cycles

3 There is some ambiguity about the definition of the D in CD. Arguably the most com‐
mon meaning is as described here. Continuous deployment is one step beyond contin‐
uous delivery where changes that successfully pass all the gates of the deployment
pipelines are automatically moved to production. Continuous deployment requires a
significant investment in testing to ensure changes do not cause havoc in production,
and typically involves feature flags and other advanced techniques.

integration (CI) and continuous delivery (CD), you can rapidly
deliver features and functionality while still getting a good night’s
sleep. How do you keep your services healthy? How do you know
you can trust them? The key is deployment pipelines.

CI and CD to the Rescue
Odds are you’ve heard of CI and CD, but there is a fair amount of
confusion around the topic. What is the difference (other than a
single letter)?footnote:[For more on this topic, see the Tanzu devel‐
oper guide.

In a nutshell, continuous integration could be summarized as
“merge early, merge often.” But it is more than that. It starts with an
automated build separate from the integrated development environ‐
ment (IDE). Code isn’t just built, it is also subject to a barrage of
automated tests. Ranging from traditional unit tests all the way
through various integration or end-to-end tests, automated tests
provide a safety net for developers. A robust test suite allows devel‐
opers to change code at will, while knowing a broken test will alert
them to any issues their changes may have caused. Code quality
scans can be employed to catch common mistakes and antipatterns,
helping to ensure adherence to standards. Again, deviation is detec‐
ted and fixed early.

Continuous delivery builds upon the foundations of CI, taking it to
the next level: releasing code.3 It takes automation to the release
process, allowing you to decide what cadence is most appropriate.
The goal? Find issues before your code hits production servers. CD
takes the deployable unit coming out of your CI process and moves
it from a dev region all the way through to production. This process
typically involves a pass through QA and a customer acceptance
gate, both of which may involve a manual sign-off.

Deployment Pipelines | 21

https://oreil.ly/372b2
https://oreil.ly/372b2
https://oreil.ly/uESy7
https://oreil.ly/tqbWc

4 See Vincent Martí’s 2015 post, “Move Fast and Fix Things,” on the GitHub blog.

Deployment pipelines give you a well-worn path to production. You
can’t become an expert at a given task when you only do it once or
twice; expertise grows with repetition. Deploy often, and you
develop a kind of digital muscle memory. If you only randomly
expose your code to unit tests or linting, you can’t expect much
improvement. But if you subject your code to the same procedures
on each and every commit, you develop a process you can trust.

To support these more dynamic environments, companies are
increasingly turning to automation to ensure a consistent, repeatable
delivery process. While artisanal coffee may make your morning
better, an irreplicable build process isn’t anyone’s definition of a
good way to start your day. It turns out that people aren’t very good
at doing the same things over and over again (see golf). To ensure
that the code you deploy to production meets your expectations, it
should pass through a rigorous process. Tools like Concourse, Azure
DevOps, and Jenkins help you create robust pipelines. You can craft
the proper gates, and gain confidence that your code can pass the
proverbial gauntlet.

These pipelines were once bespoke one-off endeavors. Today you
can leverage projects like Spring Cloud Pipelines or dotnet-pipelines
as a starting point. Following an opinionated build/test/stage/prod
flow, you can be up and running in your own environment quickly.
And you can be sure that your code does what you say it does,
thanks to a shortened “idea to production” cycle.

Move Fast and Fix Things
Software development has changed dramatically in recent years, and
you cannot afford to say “That’s how we’ve always done it.” Applica‐
tions are evolving rapidly, requiring you to move fast and fix things.4

Clinging to decades-old processes is a recipe for failure. Thankfully,
you have proven patterns and practices to help you accelerate time
to market.

Given the need to iterate quickly, independent life cycles may be one
of the least-appreciated benefits of a microservice architecture.
Looking for parts of your codebase that need their own commit-to-
production flow can be an invaluable learning tool.

22 | Chapter 3: Independent Life Cycles

https://oreil.ly/X8-Z3
https://concourse-ci.org
https://oreil.ly/xS50U
https://oreil.ly/xS50U
https://www.jenkins.io
https://oreil.ly/Q0_G7
https://oreil.ly/h3-Ta

Of course, your application’s life cycle isn’t the only volatile aspect of
modern software. Odds are that parts of your system need to scale at
different rates, too.

Move Fast and Fix Things | 23

CHAPTER 4

Independent Scalability

Monoliths often force you to make decisions early, when you know
the least about the forces acting on your system. Your infrastructure
engineers probably asked you how much capacity your application
needs, forcing a “Take the worst case and double it” mentality, lead‐
ing to poor resource utilization. Instead of wild guesses, a microser‐
vice approach allows you to more efficiently allocate compute. No
longer are you forced into a one-size-fits-none approach; each ser‐
vice can scale independently.

The Monolith Forced Decisions Early—with
Incomplete Information
Let’s take a quick spin in our hot tub time machine and head back to
an era before cloud, microservices, and serverless computing.
Servers were homegrown and bespoke, beloved pets if you will.
When developers requested a server for a new project, it would take
weeks or months for it to become available.

Years ago, one of my peers requested a development database for
our architecture team. It was never going to hold a lot of data, it
would mostly just act as a repository for some of our architectural
artifacts. One would think a small, nonproduction database could be
provisioned somewhat quickly. Amazingly, it took an entire year for
us to get that simple request fulfilled. Who knows why this was the

25

https://oreil.ly/OdEQz

1 I theorize that a team wrote a database as part of the request, but I could be wrong.

case—strange things happen in traditional enterprise IT.1 But I do
know that these kinds of delays incent a raft of undesirable behavior.

Sadly, this experience is familiar to most IT professionals. Extended
lead times force you to make capacity decisions far too early. In fact,
the very start of a new initiative is when you know the least about
what your systems would actually look like under stress. So you’d
make an educated guess, based loosely on the worst-case scenario.
Then, you’d double it, and add some buffer. (Plus a little more just in
case.) In other words, you would just shrug your shoulders as in
Figure 4-1.

Figure 4-1. How much capacity would you say you need?

And while this meant you often heavily overprovisioned infrastruc‐
ture (and overspent), that was still a good outcome for organiza‐
tions. After all, adding capacity after the fact was just as painful.

Any developer familiar with agile development practices under‐
stands the disadvantages inherent with big up-front planning and
design. Agile ultimately leverages nested feedback loops to give you
more information while allowing you to delay decisions to the last
responsible moment. Distributed architectures and cloud environ‐
ments bring many of the same advantages to your infrastructure.

Not All Traffic Is Predictable
It wasn’t just your initial server setup that suffered in this era,
though. Static infrastructure, combined with your old friend the
monolithic application, made it nearly impossible for you to deal

26 | Chapter 4: Independent Scalability

with unexpected demand. Even if you had a good understanding of
what your systems needed under normal circumstances, you
couldn’t predict when a new marketing campaign or a shout-out
from an influencer would send thousands (or millions) of hungry
customers to your (now) overwhelmed servers.

Things were no better for Ops teams running your data centers. It
could take months to add additional servers or racks. Traditional
budgeting processes made it very difficult to add capacity in any
kind of smooth manner. Instead, operators were forced to move in a
stepwise fashion, relying on (at best) educated guesses about the
shape of future business demand.

While this approach was logical at the time, it meant many organi‐
zations had massive amounts of unused compute resources sitting
idle nearly all of the time. Single-digit utilization numbers for
servers were common. Business units were paying for unused
capacity every month just in case a surge or spike in demand occur‐
red. While this may have been an acceptable tradeoff in the past,
today it would charitably be considered an antipattern.

Elastic infrastructure combined with more modular architectures
mitigate many of these antipatterns. Today, you can add, and just as
importantly reduce, capacity on demand. You can start with a rea‐
sonable number of application instances, adapting as you learn more
about your load characteristics. Working with your business team,
you can spin up extra capacity for that big event and then ramp it
down after. You can wait until the last responsible moment, freeing
you to make better decisions based on real data, not hunches and
guesses.

Most recognize this as a benefit of the public cloud, but it’s true in
the enterprise data center as well. And the savings are just as real.
Resources not used by your apps can be leveraged by another group
in your organization.

Scale Up Where It Is Needed
The monolith also suffered from a structural constraint: you had to
scale the entire thing, not just the bits that actually needed the addi‐
tional capacity. In reality, the load or throughput characteristics of
most systems are not uniform. They have different scaling
requirements.

Scale Up Where It Is Needed | 27

Microservices provide you with a solution: separate these compo‐
nents out into independent microservices. This way, the services can
scale at different rates. For example, in Figure 4-2, you are free to
spin up additional instances of the Order Processing Microservice
to satisfy increased demand, while leaving everything else at a nor‐
mal run rate.

Figure 4-2. Microservices allow you to scale up the parts of your appli‐
cation that need it

In this scenario, it is quite likely that the Order Processing system
requires more capacity than the Account Administration functional‐
ity. In the past, you had to scale the entire monolith to support your
most volatile component. The monolith approach results in higher
infrastructure costs because you are forced to overprovision for the
worst case scenario of just a portion of your app. If you refactor the
Order Processing functionality to a microservice, you can scale up
and down as needed.

But how do you know which parts of your application require more
capacity? Monitoring to the rescue!

Monitoring for Fun and Profit
Good monitoring is vital for a healthy microservice biome. But
knowing what to monitor isn’t always obvious. Luckily for us, many
organizations are sharing their experiences! You owe it to your serv‐
ices to spend some time perusing Site Reliability Engineering by
Beyer et al. (O’Reilly), which is filled with wisdom. For example,

28 | Chapter 4: Independent Scalability

https://oreil.ly/x9ncQ

2 For more on this topic, see chapter 6 of Site Reliability Engineering, “Monitoring Dis‐
tributed Systems.”

3 If you don’t know the scalability characteristics of your app, monitoring is a data-driven
way to determine those heuristics.

Rob Ewaschuk identifies the four golden signals: latency, traffic,
errors, and saturation.2

The golden signals can indeed provide insights into parts of your
system that could benefit from independent scalability. Over time,
you will gather priceless intelligence about the actual usage patterns
of your application, discovering what is normal (green), what values
send a warning about future issues (yellow), and what thresholds are
critical, requiring immediate intervention (red).3 Look for areas with
significant traffic or where latency exceeds your requirements.
Keeping a close eye on saturation and error rates will also help you
find the bottlenecks in your system. Where is your system con‐
strained? Memory, I/O, CPU, or network? Proper monitoring pro‐
vides these insights.

Spring Cloud Sleuth
With a monolith, tracing a request through the code was relatively
straightforward: put in a breakpoint (or 20) and run the applica‐
tion. As soon as you add microservices to the equation, things
aren’t quite so simple anymore. Now calls bounce between 5 or 10
(or more!) services, making them difficult to trace. Thankfully,
Spring Cloud Sleuth can help!

Spring Cloud Sleuth handles all the configuration, including spans
(the basic unit of work), sampling, and baggage (key:value pairs
stored in the span context). It adds trace and span IDs and instru‐
ments the common ingress and egress points (servlet filters, mes‐
sage channels, etc.). It can also generate Zipkin-compatible traces if
you’d like. With Spring Cloud Sleuth on the classpath, any Spring
Boot app can generate trace data!

Metrics shouldn’t be a hand-rolled solution; take advantage of tools
like Wavefront, Dynatrace, New Relic, Honeycomb, and others.
Spring Boot Actuator supports a number of monitoring systems out
of the box. Actuator also includes a number of built-in endpoints

Monitoring for Fun and Profit | 29

https://oreil.ly/W4_v0
https://oreil.ly/9pa_q
https://zipkin.io
https://oreil.ly/LwAAB
https://www.dynatrace.com
https://www.newrelic.com
https://www.honeycomb.io
https://oreil.ly/N1zOM
https://oreil.ly/8eqNC

4 Which you are also running early and often, right?

that can be individually enabled or disabled, and of course you can
always add your own.

Don’t expect to get your monitoring “right” the first time—you
should actively review the metrics you collect to ensure you are get‐
ting the best intelligence about your application. Many companies
today have teams of site reliability engineers (SREs). SREs help your
product teams determine what they should monitor and, as impor‐
tantly, the sampling frequency. Oversampling doesn’t always result
in better information. In fact, it may generate too much noise to give
you accurate trends. Of course, undersampling is also a possibility.
Don’t be afraid to tweak your settings until you find the “Goldilocks”
level!

Choosing what to monitor can also be tricky. The key service level
objectives of your system is a good place to start. Resist the tempta‐
tion to monitor something simply because it is easy to measure. We
are all familiar with, shall we say, less than useful metrics like lines of
code. Good metrics give you actionable information about your
system.

Retention of Monitoring Data
How long should you keep monitoring data around? The most suc‐
cinct answer is “It depends,” but that isn’t very helpful. Don’t be too
quick to throw away data from “interesting” moments in your
application’s life cycle. For instance, holiday shopping metrics can
be incredibly valuable, providing a starting point for future perfor‐
mance tests. Historical data can be helpful in planning as well.

Last, but not least, monitoring is not just for production. When you
monitor staging, as well as lower regions, it validates your monitors.
Just as you test your code, you should also ensure your monitors are
doing what you expect them to do. Early monitoring not only allows
your team to gain much needed familiarity with your toolset, it is
also essential for performance and stress testing.4

30 | Chapter 4: Independent Scalability

https://oreil.ly/vEJX7
https://oreil.ly/vEJX7

All Services Are Equal (But Some Services Are
More Equal than Others)
While you should never overlook the importance of monitoring,
don’t neglect a less technical part of the equation: a conversation
with your business partners. It is vital that you understand the
growth rate of your services, and how that’s linked to the underlying
business. What are the primary business drivers of your services?
Do your services need to scale by the number of users or number of
orders? What will drive spikes in demand? Take the time to translate
this information to the specific services that will be affected.

Don’t be afraid to use a humble spreadsheet to help your business
partners understand the cost/benefit scenarios inherent with various
approaches. For example, scaling order processing might incur addi‐
tional costs, but that translates to fewer abandoned carts and more
happy customers. While you might have to swizzle together some
numbers, it can also help you decide how to deploy limited
resources.

Don’t neglect your data in these conversations. At what rate does
your data grow? What type of database solution makes the most
sense for your problem domain? Are you read-heavy? Write-heavy?
Inquiring minds want to know.

Many businesses plan promotions around holidays or marketing
events. Others have predictable spikes in business around certain
parts of the year. If you are a retailer, odds are you are familiar with
Black Friday and the associated sales, as well as the deluge of cus‐
tomers. Some industries have a year-end or quarterly cadence. Take
the time to understand the important dates in your company’s calen‐
dar and plan accordingly. If you don’t know, ask. Again, you will
have to determine what services are most affected by these business
events. Internalizing the key dates for your organization can mean
the difference between delighted customers and former patrons, lost
revenue, and poor word of mouth.

It should be obvious that some services are more business critical
than others. Using the information you’ve mined from your busi‐
ness team, you can establish a criticality for a given service. Just as
you categorize an outage by severity and scope, you can identify
which services are business critical. Returning to our mythical
Widget.io Monolith, the ability to process orders is far more

All Services Are Equal (But Some Services Are More Equal than Others) | 31

https://oreil.ly/KSy6X
https://oreil.ly/KSy6X

important than the product recommendation service. This fact fur‐
ther reinforces our decision to refactor the Order Processing Ser‐
vice. Apply some due diligence to your services. Which of them
could be down for a few hours (or days) with minimal impact?
Which ones would the CEO know about instantly in the event of an
outage?

Modernize Your Architecture to Use Modern
Infrastructure
Independent scalability is one of the most powerful benefits of a
microservice approach. The monolith forces you to make decisions
at a point in the process when you know the least about what your
projects would actually need. This leads to overspending on
capacity, and your apps are still vulnerable to spikes in demand.
Monolithic architectures force you to scale your applications at a
coarse-grained level, further exacerbating the issue. Thankfully,
things are much better today.

Modern infrastructure allows you to react in real time—adjusting
capacity to match demand at any given moment. Instead of paying
every month for the extra capacity you only need once a quarter,
you can pay as you go, freeing up valuable resources.

Odds are, your applications would benefit from these capabilities.
Proper monitoring along with a solid understanding of your busi‐
ness drivers can help you identify modules you should refactor to
microservices. Cloud infrastructure allows you to be proactive while
also maximizing the utilization of your hardware resources.

As with the previous principles, you can see once again how micro‐
services give you flexibility. Instead of over-allocating resources for
those bits that need it, you can tailor your compute to the needs of
your application. Doing so can not only save you money, but it also
gives you the ability to react to the ebb and flow of demand. From
here, it is time to turn our attention to when things don’t quite go as
planned.

32 | Chapter 4: Independent Scalability

CHAPTER 5

Failure Isolation

In a perfect world, bad things would never happen. Sadly, your
applications do not inhabit such a magical realm. To paraphrase a
fictional mathematician, failure, uh, finds a way. Should you just
surrender to the inevitable chaos and let your customers suffer the
ramifications? Of course not! Microservices can be used to isolate a
dependency, giving you a natural spot to build in proper failover
mechanisms. Performing architectural reviews and leveraging pat‐
terns like circuit breaker will help your apps thrive within the may‐
hem of distributed systems.

No Service Is an Island
Digital products don’t live alone. Every piece of tech you use today
interacts with something else. The same is true for the custom soft‐
ware you write. Each bit of code works as a part of a larger whole, it’s
just one piece of a system that executes a business process. The
name isn’t a coincidence: microservice implies interdependence with
other services.

Monoliths have plenty of dependencies, too. It’s common for mono‐
liths to integrate with an aging third-party application that you don’t
control. Often you are forced to wire these two systems together
with baling twine and duct tape. These engineers weren’t masochis‐
tic. They did the integration for good business reasons, most likely
to provide more complete information or a better user experience.

33

https://oreil.ly/u_5XK
https://oreil.ly/u_5XK
https://xkcd.com/1988

1 Speaking of learning from the past, read (or reread) “A Note on Distributed Comput‐
ing” by Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall at Sun Microsystems
Laboratories, Inc.

These integrations are a fact of life in software development. You
should expect to have connections between services that were never
designed to work together. You should also expect that external
services are unlikely to meet your service level objectives.

Fallacies of Distributed Computing
Whether new to microservice architectures or not, software engi‐
neers should familiarize themselves with the fallacies of distributed
computing. According to L. Peter Deutsch and others at Sun
Microsystems, these are assumptions developers repeatedly make:

• The network is reliable.
• Latency is zero.
• Bandwidth is infinite.
• The network is secure.
• Topology doesn’t change.
• There is one administrator.
• Transport cost is zero.
• The network is homogeneous.

None of these are new—this list dates back many years!—yet many
of these mistakes continue to fester today. While you could debate
which is the most pernicious, it is clear that not everyone has
learned from the past.1

When a downstream dependency fails, it’s tempting to point the fin‐
ger at a poorly architected piece of technology. But your customers
don’t care about excuses. They just want to interact with your soft‐
ware, quickly and easily, then get on with their day.

When you need to protect your systems from failures you can’t con‐
trol, microservices are a great option. Failure domains can reveal
fault lines and seams in your applications. Refactoring the function‐
ality in question into microservices allows you to isolate that

34 | Chapter 5: Failure Isolation

https://oreil.ly/pSqGV
https://oreil.ly/pSqGV
https://oreil.ly/vEJX7
https://oreil.ly/b-Ha7
https://oreil.ly/b-Ha7

dependency from the rest of your application. More importantly,
you can protect your service level objectives (SLOs) by building in
proper failover mechanisms. But how do you know where these fail‐
ures might happen? By taking the time to perform an architectural
review.

Architectural Reviews
Odds are, you have a pretty good idea of what aspects of your sys‐
tem will benefit from failure isolation. But don’t assume you know
where all the dragons live. Take the time to perform an architectural
review. Gather all your subject-matter experts together—developers,
architects, and site reliability engineers. You don’t need any formal
architectural artifacts. Draw up the architecture (a whiteboard
works really well). Make sure to ask and answer questions like:

• What systems does the application talk to?
• How do they integrate?
• Is it a direct call or does it go through a proxy layer?
• What availability level can you expect from those systems?

Walk through the architecture. Does everyone have a shared under‐
standing of what the application does? Does everyone understand
the requirements? Are you all in agreement as to what talks to what?
You’ll uncover a lot of details if you ask impertinent questions like:

• What happens when that call fails?
• What is our average response time on that request?
• What would our support team change about the user

experience?

You will inevitably find gaps in the broader understanding. That is a
feature of this exercise, not a bug! What you thought was a direct
call might actually go through a message bus. As you explore the
architecture, you will find bottlenecks. It turns out the Wombat ser‐
vice has a lower availability level than you need to provide. Interest‐
ing failure cases will result, like when the month’s end coincides with
a Super Blue Blood Moon, for instance.

Architectural Reviews | 35

https://oreil.ly/1eWGX

2 Robert Frost, “The Road Not Taken,” 1916.

The Unbearable Lightness of Dates
Many years ago, I helped build an application for the team that
managed all our shared data—office codes, regions, states, that kind
of thing. A few months after turning the project over to the data
team, my director asked if I could help them with a build break. I
was happy to pitch in but pointed out they should review the last
change they made, only to discover they hadn’t updated the code‐
base in a few days. Interestingly, that morning a test broke. After
investigating, I discovered one of the tests I wrote was bound to fail
every seven years. I don’t honestly remember if I fixed the test or
simply noted it would fail again but it was a reminder of the odd
behavior calendars sometimes elicit.

I often reflect on this episode as a reminder of how difficult it can
be to imagine all the possible failure points in distributed architec‐
tures. It isn’t easy. Even trivial mistakes can have far-reaching unin‐
tended consequences. We owe it to our customers to explore the
“the road less traveled by.”2

All of this information will give you vital intelligence about where
your application might benefit from failure isolation. Refactor away!

Failures Find a Way
You cannot afford to have failures cascading up to your users. Once
you’ve isolated a failure, think about how to react when it occurs.
Because it will happen. Do you need to add some redundancy to
account for the flakiness of the Wombat system? You might need to
have backup services for critical aspects of your system. Should you
consider the use of eventual consistency mechanisms, like using
Redis to cache data? Data ages at different rates: while a stock price
from a few seconds ago isn’t useful to a trading desk, it is probably
fine for retirement account balances. You need to use proven pat‐
terns to ensure your systems are resilient. Odds are, your systems
will leverage the circuit breaker pattern.

36 | Chapter 5: Failure Isolation

https://oreil.ly/3MsXu
https://redis.io
https://oreil.ly/XZ__l

3 Don’t neglect the other patterns Nygard identifies in his book, such as bulkhead, shed
load, and governor.

The Circuit Breaker Pattern
Described by Michael Nygard in his seminal book, Release It! (Prag‐
matic Bookshelf), the circuit breaker pattern is vital for stable sys‐
tems.3 Quite simply, a circuit breaker protects a service. It monitors
calls to the service. When it sees a certain failure threshold, the
breaker is tripped (aka opened), redirecting calls to a configured
failover mechanism. That could be an alternative service, a default
result, or even an error message. A tripped breaker may also result
in an alert to the development team. The circuit breaker can period‐
ically let a call through to see if the service has recovered, resetting if
the error threshold is no longer exceeded. It can help to visualize the
various states of a circuit breaker, for example Figure 5-1.

Figure 5-1. An overview of the circuit breaker pattern

Circuit breakers are one of those useful components that simplify
building and running microservices. There are multiple options to
choose from, like Resilience4j, as well as implementations for virtu‐
ally any technology stack. Spring Cloud Circuit Breaker provides an
abstraction across multiple implementations, giving you a common
API and freeing developers to choose the implementation details
most suitable to their given application.

Failures Find a Way | 37

https://oreil.ly/2xnpH
https://oreil.ly/V-sgy
https://oreil.ly/RHVfQ

Spring Cloud Circuit Breaker
Spring Cloud Circuit Breaker provides a consistent API supporting
Netflix Hystrix, Resilience4j, Sentinel, and Spring Retry. Simply add
the proper starter to your classpath. From there, creating a circuit
breaker is just a call to CircuitBreakerFactory, which you can then
inject into any class as you see fit:

@Service
public static class DemoControllerService {
 private RestTemplate rest;
 private CircuitBreakerFactory cbFactory;

 public DemoControllerService(RestTemplate rest,
 CircuitBreakerFactory cbFactory) {
 this.rest = rest;
 this.cbFactory = cbFactory;
 }

 public String slow() {
 return cbFactory.create("slow").run(() ->
 rest.getForObject("/slow", String.class),
 throwable -> "fallback");
 }
}

You can customize the behavior of your circuit breaker individually,
or create a default configuration for all of your circuit breakers.
From here you can configure failure rate thresholds, slow call
thresholds, the sliding window size, minimum number of calls, etc.
A sample configuration looks something like this:

@Bean
public Customizer<Resilience4JCircuitBreakerFactory>
 defaultCustomizer() {

 return factory ->
 factory.configureDefault(id ->
 new Resilience4JConfigBuilder(id)
 .timeLimiterConfig(
 TimeLimiterConfig.custom()
 .timeoutDuration(Duration.ofSeconds(4))
 .build()
).circuitBreakerConfig(
 CircuitBreakerConfig.ofDefaults()
).build());
}

38 | Chapter 5: Failure Isolation

https://oreil.ly/r0OdZ
https://oreil.ly/V-sgy
https://oreil.ly/KDL-t
https://oreil.ly/_puQv

4 For more on this topic, check out Casey Rosenthal and Nora Jones’s book, Chaos Engi‐
neering (O’Reilly), “The Principles of Chaos Engineering,” and Adrian Cockcroft’s
dicussion of chaos architecture. You can also watch presentations from SpringOne Plat‐
form 2019 and QCon New York 2017.

5 Availability zones protect applications from datacenter failures by providing unique
physical locations within a given region. Redundancy is the name of the game, with
independent power, networking, and more.

Circuit breakers are vital in a healthy microservice biome. Thank‐
fully, it isn’t difficult to add them to your applications. Try it out for
yourself, and check out the circuit breaker guide from Spring. Your
customers will thank you, and you won’t get paged at three in the
morning!

As much as you might succeed in predicting where the seams are in
your systems, some edge cases are more difficult to divine. To cover
your bases, don’t be afraid to employ chaos engineering.

Chaos Engineering
Architectural reviews will help you find many soft spots in your sys‐
tem, but they won’t identify every instance where you could benefit
from failure isolation. Developers tend to be very good at identify‐
ing the “happy path” of an application. The “happy path” is the flow
a user should experience when everything is working as expected.
It’s far more challenging to anticipate all the ways your system can
go off the rails.

This is exponentially more difficult with distributed applications. A
number of services interacting in unpredictable ways leads to
unique, often chaotic, environments. How do you ensure a missed
failure case doesn’t spiral into a major system outage? Chaos engi‐
neering to the rescue!

The discipline of chaos engineering attempts to solve the inherent
difficulty in producing reliable distributed systems.4 After defining a
steady state (aka normal behavior), chaos engineering injects vari‐
ous issues that real-world systems encounter. Crash an application
instance. Simulate a network failure. Drop an availability zone.5 Fail‐
over from one cloud provider to another in production. How does
your application handle these situations?

Odds are, at least at first, chaos engineering will highlight some
weaknesses with your services. Once again, this result is a feature,

Failures Find a Way | 39

https://oreil.ly/mWCEx
https://oreil.ly/mWCEx
https://oreil.ly/k8Vrb
https://oreil.ly/MeDni
https://oreil.ly/fsuel
https://oreil.ly/fsuel
https://oreil.ly/7V992
https://oreil.ly/mYoOZ
https://spring.io/guides

not a bug. Figure out what you need to change in your system to
handle the unexpected. Over time, your systems will become more
and more reliable. The end result: you and your team will sleep eas‐
ier at night. Of course, none of this “just happens”; it is the outcome
of a significant amount of engineering discipline.

Engineering Discipline
Microservices are a complex architectural option. But they are the
right one for certain scenarios, like when you need to isolate failure
in certain components. There are ways to reduce the complexity in
how you adopt microservices. Architectural reviews, combined with
some chaos engineering, will identify vulnerable areas of your cur‐
rent application. Think through how to respond to the inevitable
failures. Incorporate circuit breakers where they make sense.

Reliable services aren’t a guaranteed outcome of microservices—that
requires engineering discipline. Armed with the proper tools and
the right approach, your services won’t have you questioning your
chosen career! In Chapter 6, you will explore a specialization of fail‐
ure isolation, indirection layers.

40 | Chapter 5: Failure Isolation

CHAPTER 6

Indirection Layers

In computer science, there are three answers that work for every
question you’ve ever been asked: “42,” “It depends,” and “Another
layer of indirection.” Microservices do not live alone; they work in
concert to deliver business value. Your services are constantly work‐
ing with a veritable cornucopia of other services, all of which are
changing and evolving at their own rate (see Chapter 2). How do
you protect your services?

This principle is similar to failure isolation (see Chapter 5), but with
a twist. Instead of guarding against the inevitable failures of our
services, we seek to protect them. “From what?” you ask. From
external dependencies that change frequently or are complex to use.
This pattern is common in software. Often, this is a vendor depend‐
ency, where one service provider is swapped for another. It could be
something large (like an ERP system), or something relatively sim‐
ple (like a mapping service).

Abstract Away External Dependencies
Enterprise systems—monoliths and microservices alike—will inevi‐
tably rely on some set of third-party dependencies. Traditionally,
your monolith would directly call those other systems or APIs. This
was (often) done to ensure acceptable performance. When it came
time to change the dependency (for whatever reason), you’d update
your system accordingly. Sounds simple, right? It was, but that was a
simpler time.

41

https://oreil.ly/dbbdg
https://oreil.ly/CJ3eJ
https://oreil.ly/quzQg
https://oreil.ly/quzQg

1 For more on this topic, see Building Evolutionary Architectures by Ford et al.

Today, your applications and the systems they often rely on are
increasingly complex. When you need to simplify these interactions,
microservices can be an appropriate architectural choice.

A microservices architecture offers you a solution. Rather than
directly calling these dependencies, you can instead place an
abstraction layer (that you control) in between the core app and the
dependency. Arguably, this principle is a specialization of failure iso‐
lation (Chapter 5), but here we are protecting against a different
kind of failure.

Third-party systems are designed to solve a large set of problems,
many of which may not be relevant to your application. Instead of
forcing your service to understand the nuance of a complex interac‐
tion, you can build a microservice that exposes a simplified inter‐
face. That’s the essence of the facade pattern.

This approach is nothing new. In fact, it is one of the 23 original
Gang of Four patterns found in the classic book Design Patterns: Ele‐
ments of Reusable Object-Oriented Software by Gamma et al.
(Addison-Wesley). Facades don’t just facilitate evolutionary archi‐
tecture.1 They can also be used to simplify a complex service.

That isn’t all a microservice facade can do for you, though. Imagine
a third-party service that requires a bit of context that doesn’t
change from invocation to invocation. Perhaps a payment gateway
uses your corporate headquarters’ location for a calculation, or a
vendor requires a token authorizing your use of their API. Rather
than have each and every consumer incorporate that bit of business
information, your facade microservice can inject the context into
the third-party call. Not only does this approach simplify calling the
service, but it also makes it far easier to update in the future.

But that’s not all! A facade can perform additional functionality
before or after making the underlying request. In Chapter 2, you
read about the data-driven strangler approach. While obviously use‐
ful as part of a larger refactoring, a facade gives you a perfect place
to inject needed behavior into your call stack. Want to log the results
of the underlying invocation? Or maybe you need to create an audit
trail for every call to the third-party system. In either case, your
facade microservice makes such interactions trivial.

42 | Chapter 6: Indirection Layers

https://oreil.ly/TxKdz
https://oreil.ly/UvJ6R

That’s the facade pattern in a nutshell! Of course, you might have
noticed that your environment is getting a bit more complicated
than it was before. How does your application survive in these
highly dynamic environments?

Facilitating Legal Compliance
Your applications do not live in a vacuum, and they are increasingly
subject to laws and regulations. From General Data Protection Reg‐
ulation (GDPR) to the Health Insurance Portability and Accounta‐
bility Act (HIPAA), your applications often deal with sensitive data,
which requires compliance with various laws and regulations.
Credit cards and personally identifiable information must be safe‐
guarded, and legal departments may need to sign off on your solu‐
tion. You may be dreading the challenge of refactoring your
heritage application, but before you do, consider isolating the sensi‐
tive bits in their own microservice. Creating a separate microservice
to handle the legally entangled aspects of your application can be
simpler and faster than attempting to retrofit the monolith. That
isn’t to suggest that microservices are a panacea for all legal quag‐
mires, but they can be simpler than the alternatives.

Managing Your Services
As you progress down the path to more distributed applications,
you’ve likely noticed an added complication. Instead of a singular
monolith, you now have dozens (perhaps hundreds) of services. Not
only are there more services, but they are also changing faster than
before. Your services are coming and going as they scale up, scale
down, or are replaced. Thankfully, the open source community has a
way to help you manage all this thrash: the service registry. Eureka
from Netflix is a popular option and as you can probably guess,
Spring Cloud allows you to quickly enable and configure service dis‐
covery, intelligent routing, client side load balancing, and the afore‐
mentioned circuit breaker. Others leverage service discovery within
their platform of choice, or take advantage of the capabilities of a
service mesh to ease the interaction pain point.

Regardless of which library or approach you use, they are simply
implementations of the service discovery pattern. Instead of a brit‐
tle, hardcoded configuration, a service registry allows your

Managing Your Services | 43

https://gdpr.eu
https://gdpr.eu
https://oreil.ly/w6MRx
https://oreil.ly/w6MRx
https://oreil.ly/wPyP5
https://oreil.ly/lRNDI
https://oreil.ly/88sLO
https://oreil.ly/88sLO
https://oreil.ly/XEhrh
https://oreil.ly/LyC7d

application to dynamically find and call services. A typical service
registry looks like Figure 6-1.

Figure 6-1. Anatomy of a service registry

Clients register themselves providing useful metadata such as host
and port. The registry also looks for a regular heartbeat from regis‐
tered services. If the heartbeat fails, the registry removes that
instance to prevent failed calls.

Quite frankly, deploying distributed architectures deserves an in-
depth discussion that is beyond the scope of this report. There is no
shortage of options at the intersection of development, infrastruc‐
ture, and application management, along with a significant amount
of accidental complexity. There is a reason some refer to these as
death star architectures. Neglect these issues at your own peril.

At the end of the day, you cannot afford to ignore the architecture of
your systems. Whether your organization has an official “architect”
role or not, you have people making architectural decisions. I hope
for your sake that they are making good ones.

The Importance of Architecture
Architecture is often described as the decisions that are hard to
change later, or the choices we wish we’d gotten right early in a proj‐
ect’s life cycle. But that definition is often in conflict with the era of
disruption. Change is inevitable. And this all-too-common view of
architecture has fostered an attitude in many companies that
amounts to “we’re agile, we don’t have architects.”

44 | Chapter 6: Indirection Layers

https://oreil.ly/qabR0

2 See Thinking Architecturally for more on this concept.

Regardless of titles or roles, you already have people in your organi‐
zation making architectural decisions.2 You owe your customers
more than just accidental architecture! Microservices can provide
additional flexibility, allowing you to refactor easily as new require‐
ments emerge.

You’ve seen how microservices can help you deal with failures, allow
your systems to evolve and scale at their own rates, and how inde‐
pendent life cycles can benefit your applications. Now it is time to
turn to the reason many developers lobby for microservices: polyglot
technology stacks.

The Importance of Architecture | 45

https://oreil.ly/mKU-D

CHAPTER 7

Polyglot Technology Stacks

Monoliths forced a standardized, often lowest common denomina‐
tor, technology stack, regardless of the fit to purpose. Microservices
give you the freedom to choose the right language or database for
the business requirements rather than force a one-size-fits-all
solution.

We’re a Java Shop
In the past, companies often tried to standardize on a limited set of
technologies. Many development organizations described them‐
selves by their primary technology (i.e., as a Java shop or a .NET
team). In the same vein, developers used their favorite language as
an adjective, as in “I’m a JavaScript developer.”

In the era of the monolith, these colloquialisms made sense. Compa‐
nies standardized on one tech stack because they could:

• Develop deep expertise with a given language and the associated
frameworks

• Shuffle people between teams to balance workloads and cross-
pollinate ideas throughout the organization

• Simplify the hiring and training process
• Allow operations teams to specialize in a single environment

47

1 OK, let’s be honest: N-7 to N-3.

All was not puppies and rainbows during this era of software devel‐
opment, though. Things are never that simple—trade-offs are
unavoidable. Language standardization often exacerbated currency
issues. For example, shared servers lead to months-long slogs to
move from version N-2 to version N-1.1 In the amount of time it
took to complete an upgrade, a major new version of the technology
was often released. Eighteen months of freezes, testing, change-
review boards, and frustration was not the winning recipe for out‐
standing relationships with your business team.

Bespoke infrastructure often forced the lowest common denomina‐
tor for library and language versioning as well. Even if a team
wanted to move to the latest and greatest version of its preferred
tech stack, it may have been limited by the “slowest-moving” herit‐
age application in the house. How often have you heard a variation
of, “We can’t upgrade to X until the Wombat application is ready for
it?” Unless there was a burning platform moment (looking at you,
Windows XP), most product owners prioritize shiny new features
over paying down technical debt.

All that said, very few organizations were ever truly homogeneous.
Mergers and acquisitions happen, inevitably bringing new technolo‐
gies to the business. Some far-flung requirement would lead to the
introduction of a new database or language. But, as a rule, organiza‐
tions wanted to limit the technology solutions they supported.

Today, you have options; you aren’t beholden to a technology choice
made by someone five levels above you in the organizational chart.

One Size Fits None
Microservices are a great architectural option when your teams need
to choose the right tech for the job. But when does this scenario
arise, and why does it matter? It is tempting to let résumé-driven
design justify the selection of a new language, but it is a terrible rea‐
son to opt for a microservice architecture.

You should consider a new technology stack when there are recog‐
nizable benefits to your business. For example:

48 | Chapter 7: Polyglot Technology Stacks

https://oreil.ly/QK-EZ
https://oreil.ly/SBaIM

2 For more on this, see Neal Ford’s “Polyglot Programming” post from 2006.

• New business initiatives are best served with a nonrelational
database.

• A different programming language greatly simplifies an
algorithm.

• Evolving business requirements suggest an event-driven solu‐
tion that depends on a distributed streaming platform.

It is tempting to reach for a new toy after reading about a new data‐
base or sitting through a webinar on an evolving language. But it is a
much more nuanced decision. Can you hire (or train) enough devel‐
opers with that particular skill set? Before you add complexity to
your environment, be sure you have compelling reasons to do so.

Cloud computing opened up a new universe of options and flexibil‐
ity. Elastic infrastructure combined with microservices architectures
enabled you to break free from the tyranny of a singular technology
stack. No longer are you required to pound a square peg into a
round hole. You can simply pick up a round peg! If a different data‐
base simplifies a solution, or if using an alternative language greatly
reduces the codebase for a service, you are free to choose the right
technology to fit the problem. The promise of polyglot program‐
ming is finally realized!2

However, there is a massive downside to a polyglot approach. To
(once again) paraphrase the mathematician in Jurassic Park: Just
because you can doesn’t mean you should. In today’s world, your
business is evolving at an ever-increasing pace. To keep up, you need
to ship high-quality code very quickly. Developers should be free to
choose the right tools for the job. So how do you empower your
teams responsibly?

Paved Roads
Every developer has their favorite languages, frameworks, and tools.
Products will have their own deployment pipelines, monitoring
suites, and preferred metrics. Without some guardrails, you will
quickly discover there are an awful lot of ways to “do that one thing,”
depending on who you ask. How do you develop any amount of
consistency if nothing is the same?

Paved Roads | 49

https://oreil.ly/1GzM8
https://oreil.ly/gU_14

3 Side note for all the parents out there: it’s much easier to give kids the choice between
two or three things rather than a limitless universe of options.

Technical sprawl is only one consequence of a polyglot environ‐
ment, though. Consider the challenges in building a development
team that uses Go, Haskell, Java, .NET, Ruby, Python, and JavaScript.
Developers can always learn a new language, but it takes time to
start thinking in a given technology. The cognitive overhead of
maintaining disparate stacks can be worse than standardizing on a
one-size-fits-all model.

And don’t underestimate the inherent challenges of maintaining a
polyglot environment. For example, think about how much effort it
takes to stay current on one stack. Now multiply that toil by four or
five, and remember you’ve signed your development team up for a
long-term support agreement on each and every one of those frame‐
works. Don’t forget the ecosystem each stack requires—how much
will it cost to support the various logging, monitoring, and deploy‐
ment approaches as well?

Too much choice can be just as painful.3 Teams will spend hours
(more likely days) “debating” which one to use. Don’t be afraid to
establish some guardrails or guide posts. For example, you may
decide to standardize on the Java virtual machine (JVM), or to pro‐
vide well-worn paths to production on a limited set of tech stacks.
Teams may be allowed to venture off that path, but they take on the
responsibility (and the support burden) of that decision—you build
it, you run it.

With great power comes great responsibility.
—Uncle Ben, Spider-Man

Provide adequate guidance to your teams to help them make the
right technology choice. Decision trees are invaluable. Say you have
the choice between three different message queues. Create a flow‐
chart asking the relevant questions to help teams narrow down their
options. The most agile teams are the most disciplined. This seems
counterintuitive at first. But when you think about it, you realize
that you gain velocity and responsiveness when you eliminate varia‐
tion and manual effort. As tempting as it is to let freedom reign, too
much choice is as dangerous as too little. Don’t be afraid to offer a
well-curated menu of options.

50 | Chapter 7: Polyglot Technology Stacks

They’re Called Microservices
There are as many definitions of microservices as there are compa‐
nies employing the pattern. But as long as you and your team have a
shared understanding of the term within your organization, it
doesn’t really matter how you define it. However, it is important to
stress the micro part of microservices.

We can debate what we mean by small, but I’ve always been partial
to the idea that a microservice is a service that can be rewritten in
two weeks or less. Emphasizing the small frees us to experiment—
and more importantly—to correct course if our hypothesis is proven
incorrect.

The more time you’ve invested in a solution, the less open you are to
making changes. How committed are you to code you’ve spent five
minutes on? What about something you spent a few weeks crafting?
If you keep your microservices small, you can afford to spend an
iteration on an experiment. After all, you’ve only committed a short
amount of time to it. If you are wrong, you can easily adjust.

In the era of the monolith, trying out something new was a recipe
for disaster. How could you just mix in a little Clojure/Scala/
Groovy/JavaScript into your existing application? With longer
development cycles, you might not discover where the “gotchas!” are
until it is too late to change course. By focusing on smaller bits of
functionality, you have the room to practice hypothesis-driven
development on your technology stack as well.

I can’t stress this point enough: while polyglot programming might
be the most common reason for developers to embrace microservi‐
ces, you must weigh the pros and cons of a diverse tech stack for
your organization. Very few organizations fully adopt the level of
developer autonomy that says, “Use whatever you want.” But those
that do apply the requisite response of, “You build it, you run it.” A
chef in a professional kitchen brings their own knives to work and is
responsible for maintaining the tools of their trade. When a team
brings its own technology stack to a project, they, too, are accounta‐
ble for those decisions. Developers are quick to invent reasons for
using shiny new toys. Add new languages and technologies with
great care.

They’re Called Microservices | 51

https://oreil.ly/dqPvp
https://oreil.ly/dqPvp

Be sure you aren’t practicing résumé-driven development. Instead,
ask whether this particular language or framework provides demon‐
strable business advantages, or if you are simply trying to add it to
your CV.

52 | Chapter 7: Polyglot Technology Stacks

CHAPTER 8

The Importance of Culture

What’s culture got to do with anything? Well, you ignore the impact
of the transition to microservices on your organization’s culture at
your own peril. While it is tempting to dismiss the “softer” aspects
of a new technique, to truly succeed requires more than just writing
a strategy statement and adding a three-day class to your educa‐
tional offerings. You must consider the larger universe that your
technology choice lives within.

Culture Impacts Everything
A company’s culture is formed very early in its existence. People
often join, and remain, at an organization because of its culture.
How often have you discussed a potential candidate for a position in
terms of “culture fit”? While you may not consciously think of it,
your corporate culture affects nearly everything, large and small,
from what attire is considered appropriate to what kind of snacks
are offered in the break room. Because culture is so ingrained,
changing it is challenging. People who have risen to power or excel‐
led within the organization have typically learned to “game” the cul‐
ture and are often resistant to any change that may jeopardize their
position.

53

1 Sinclair, “I, Candidate for Governor, and How I Got Licked,” Oakland Tribune, Decem‐
ber 1934.

2 Thompson, “The Curse of Culture”, Stratechery, May 24, 2016.

It is difficult to get a man to understand something when his salary
depends upon his not understanding it.1

—Upton Sinclair

In “The Curse of Culture,” Ben Thompson writes that “culture is one
of a company’s most powerful assets right until it isn’t,” using Micro‐
soft’s initial dismissal of the iPhone as a poignant example.2 He goes
on to detail how it took a new CEO to transform the company.
While you likely don’t have that level of authority, you must be
aware of your culture and how it will impact what you are trying to
accomplish.

Middle Management Mafia
A good friend of mine spent more than a year helping a retailer
modernize their web experience. His work was championed by
senior management (praising the project for the millions of dollars
worth of sales it drove), and by the developers who were thrilled
with the technical elegance his architecture enabled. By any metric,
the project was a huge success with easily identified positive effects
on the bottom line. However, not everyone was sold on the success.
Midlevel managers constantly sniped at the team and often directed
their staff to ignore or even subvert the effort. Despite strong sup‐
port from the top and bottom of the org chart, the project fell vic‐
tim to what they internally called the “middle management mafia.”
They failed to see how the project benefited their accountabilities,
and actively worked against its success. In many instances, culture
is where good ideas go to die.

Changing culture does not happen quickly—it takes patience. It
takes years to shift mindsets as well as hire and promote people
invested in the new. I spent several years at an organization that
made the shift to agile development. Requests for project rooms
were met with blank stares and confusion from facilities manage‐
ment. Thankfully, our managers wouldn’t take no for an answer, and
were continually pressing our case. Eventually, facilities relented,

54 | Chapter 8: The Importance of Culture

https://oreil.ly/kYoaG

3 Adapted from Conway’s paper, “How Do Committees Invent?” published in Datama‐
tion, April 1968.

giving us a less than desirable internal conference room lacking nat‐
ural light or a cell signal. That single room allowed us to show suc‐
cess and build credibility. It also served as a model for future project
rooms. Facilities management, freed of the constraints of felt-lined
boxes, offered up several innovative suggestions. Eventually the IT
floors were all renovated to project rooms of various sizes. It did not
happen quickly and took the effort of a great many determined
people.

Evolving Your Organization
Sometimes the easiest way to change culture is to start an entirely
new one. Some organizations create a special floor (or an entire
building) where teams are freed of the normal constraints. Others
go further, establishing a group with the express intent to “do things
differently,” while still others spin out an entirely separate company
that is free to build a culture from the ground up. Regardless of the
implementation, the goal is the same: give groups of like-minded
individuals a fresh start, freeing them from the insidious phrase
“That’s how we’ve always done it.”

If you’ve recently started down the microservices path, you may
have discovered that your org chart is making things harder than
they should be. Conway’s Law states:

Any organization that designs a system (defined broadly) will pro‐
duce a design whose structure is a copy of the organization’s com‐
munication structure.3

—Melvin E. Conway

How do you create a series of small, isolated services if your organi‐
zation isn’t made up of small, isolated teams? The Inverse Conway
Maneuver tells you to evolve your org chart to match the desired
architectural end state. However, you will need to think about how
those teams will work together. A microservice is not an island unto
itself. What happens when Team A builds something successful and
their infrastructure demand (and cost) goes up? Can they “charge
back” to the calling applications based on usage? Do they need to
rate limit calls? Prepare for conversations with your accountants—

Evolving Your Organization | 55

https://oreil.ly/gkcC_
https://oreil.ly/TuBqx
https://oreil.ly/TuBqx

you can’t afford to ignore your organization’s approach to budgeting
and capacity planning.

Internal “funny money” is only one piece of the distributed chal‐
lenge; you must carefully consider how your services change and
grow. How do you navigate incompatible change requests from dis‐
parate consumers? How does your team prioritize requests? Is it
based on traffic? What about business criticality of the system?
There are no hard and fast rules; you will need to try out various
approaches and adapt to what works best in your world.

By definition, microservices will evolve over time. However, care
must be taken to ensure those changes don’t break consumers that
have come to rely on the service. The answer isn’t to pour concrete
all over your system preventing change; instead. rely on consumer-
driven contracts. In a nutshell, you create a set of tests that “defines”
what your service does and how it responds. Please note, this
approach is not a schema, it defines scenarios of usage—given A,
return B—and the tests verify the integration point. Provided your
changes do not alter the defined contract, you are free to evolve at
will.

Spring Cloud Contract
Spring Cloud Contract makes it dead simple to leverage consumer-
driven contracts on your projects. Contracts can be written with a
Groovy DSL or with YAML. Adding the Spring Cloud Contract
Verifier dependency and plug-in to your build file will automati‐
cally generate tests when running ./mvnw clean install. Imple‐
ment the handling of the requests or messages. Once the tests pass,
you can publish the stub artifacts along with your application.
These contracts act as living documentation of the expectations of
the service! Consumers can also leverage these stubs during inte‐
gration testing to ensure they are upholding their side of the
contract.

Having the proper organizational structure is vital to successfully
adopting microservices. Don’t try to reinvent the wheel; learn from
what has worked (and what hasn’t) at other companies. Team Topol‐
ogies from Matthew Skelton and Manuel Pais is a great place to
start.

56 | Chapter 8: The Importance of Culture

https://oreil.ly/CtKMl
https://teamtopologies.com
https://teamtopologies.com

1 “Distributed Big Balls of Mud,” Coding the Architecture (blog), July 6, 2014.

CHAPTER 9

Migrating to Microservices

Microservices are great! If you need them, that is. The road to
microservices is paved with good intentions, but more than a few
teams are jumping on the bandwagon without analyzing their needs
first. Microservices are powerful, and they should absolutely be in
your toolbox. Just make sure you consider the trade-offs. There’s no
substitute for understanding the business drivers of your applica‐
tions; this is essential to determining the proper architectural
approach. And it turns out, they aren’t the only approach you can
leverage.

Modular Monoliths, Macro Services, Oh My!
It should be stressed that monoliths span the continuum of modu‐
larity and they actually can be structured in such a way that they
don’t suffer all of the maladies normally associated with the term
monolith. You can apply microservice design principles to mono‐
liths! When facing all the issues the monolith entails, it is tempting
to (attempt) to jump directly to a microservice architecture. How‐
ever, for many, that path leads to a distributed big ball of mud.

If you can’t build a monolith, what makes you think microservices
are the answer?1

—Simon Brown

57

https://oreil.ly/bfloN
https://oreil.ly/88ouH

2 Some organizations’ environments are so dynamic, they don’t have an exact count of
how many services are running at any given moment.

Obviously, a distributed big ball of mud is the worst of both
worlds—all of the accidental complexity, none of the benefits of a
truly distributed system. Many have found moving to a modular
monolith first facilitates finding bounded contexts within your
application. It is possible to break a monolith into modules that give
you some of the benefits of highly distributed systems. From this
new normal, the microservices should be more evident and you can
continue your refactoring, stopping when you’ve reached the proper
return on your investment. Your architectural choices span modu‐
larity and distributability, as you can see in Figure 9-1.

Figure 9-1. Applications exist on a continuum of modularity and dis‐
tributability

From a modulith to Self-Contained Systems, there are any number
of viable architectural approaches. Do what is right for your
application.

Many adopters of microservices quickly discover they have
hundreds, or, more often, thousands of services deployed to produc‐
tion.2 Microservices are hard! Building, testing, deploying, monitor‐
ing, and managing highly distributed systems isn’t easy. Some
organizations are swinging back to coarser-grained or macroservi‐
ces. The only right answer is what works best for you.

58 | Chapter 9: Migrating to Microservices

https://oreil.ly/O2sj7
https://oreil.ly/QWhkf
https://oreil.ly/rk29u
https://oreil.ly/_YeNK
https://oreil.ly/_YeNK

3 Newman, “How Big Should Microservices Be?” (video), uploaded May 3, 2020.

How Big Should a Microservice Be?
As small as possible but no smaller? Small enough to fit inside your
head? No more than X lines of code? Many teams want a definitive
answer, an algorithm, that will tell you if a service is too large or too
small, but, as with much of software, the answer isn’t so clear cut.
Sam Newman argues that size isn’t the right metric as the concept
varies by experience and skills.3 As you build more services, odds
are it will be easier for you to, well, build more services. You will
have the tools and muscle memory to deploy, manage, and monitor
a fleet of services. What you once considered small may now be far
too large for comfort. As Sam says, “size” isn’t the differentiator
here, the real question is how many services can you manage? Do
what’s right for you and your organization.

Of course, you aren’t starting with a blank slate, you have existing
applications. How do you decompose the monolith?

Decomposing the Monolith
Software prognostication often ignores the reality facing every orga‐
nization—the entrenched portfolio of heritage applications that
make up the bulk of every company’s IT environment. While it is
tempting to nuke and pave, you have to face the facts: these applica‐
tions are powering your business, and you must chart a path for‐
ward. If you aren’t sure how to start, techniques like event storming
can help. Event storming is a collaborative technique designed to
help you discover bounded contexts and vertical slices of an applica‐
tion. As a group activity, event storming requires little more than
sticky notes, Sharpies, some painter’s tape, and a large wall.

As a group, participants “storm the business” process, jotting down
domain events on sticky notes. The facilitator will often kick things
off by identifying the start and end of the process. Focus on the
happy path to begin with and use past tense for events. As your team
works through the business domain, you will inevitably find trouble
spots, external systems, parallel processing, and time-constrained
events like batch processes. Once you’ve brainstormed the events,

Decomposing the Monolith | 59

https://oreil.ly/oL6qr
https://oreil.ly/ZbcGt
https://oreil.ly/k1pUd
https://www.eventstorming.com

work with domain experts to enforce a timeline, which will often
uncover missing elements.

Once you have a timeline, look for domain aggregates, aka bounded
contexts. Identify pivotal events that transition across subdomains.
These clumps of events will often expose candidate services. From
here you can also rough out user interfaces, personas, and whatever
else is important in the domain.

In addition to event storming, you can apply a set of heuristics to
discover domains. Some things to look for:

• The structure of the organization: Where in your organization
does the same business concept have different key attributes?
For example, an insurance policy means different things to the
billing area than it does to the claims department.

• Domain language: Where does a given term mean the same
thing and, more importantly, where does it mean something
else entirely?

• Where are domain experts positioned in the org chart?
• What is the core domain of the company? Strategic differentia‐

tion should inform your breakdown.

Once you have some candidate boundaries, you can test them! Are
there any “overloaded contexts”—that is, places where the context
does too many things? A multitude of if statements indicates you
probably have two or more domains. Is your context autonomous?
Can it make decisions on its own, or does it need to reach out to a
dozen other modules? It may seem a bit fuzzy, but don’t forget to do
a sanity check. Do these boundaries feel right?

There is a fair amount of art involved when you decompose a mono‐
lith—there is no magic formula. Hopefully, these tips will help and
give you a place to start your journey. Refactoring takes time, so be
patient; your portfolio wasn’t built in a day, and you won’t move
everything to the cloud in a week. Good luck!

60 | Chapter 9: Migrating to Microservices

https://oreil.ly/YQnz_

4 And, perhaps more importantly, when not to use them.

Next Steps
I hope this guide has given you some practical advice on when to
apply microservices.4 If you want to go deeper, here are some addi‐
tional resources:

• Neal Ford’s “Microservices Essentials” playlist
• Building Microservices by Sam Newman (O’Reilly)
• Production-Ready Microservices by Susan J. Fowler (O’Reilly)
• Microservices Patterns Video Edition by Chris Richardson (Man‐

ning Publications)
• Microservices AntiPatterns and Pitfalls by Mark Richards

(O’Reilly)

There are many good reasons to use a microservices architecture.
But there are no free lunches. The positives of microservices come
with added complexity. Don’t use microservices just to check a box,
or because some company you admire leverages them. Do what is
right for you and your team.

I hope this report has helped you have more rational and informed
discussions about when and how to best use microservices in your
enterprise. This topic is one of the most important you’ll face in the
next five years. Thanks for reading, and please microservice
responsibly!

Next Steps | 61

https://oreil.ly/VfI_z
https://oreil.ly/JDsHl
https://oreil.ly/rfY2F
https://oreil.ly/oJRjV
https://oreil.ly/VIton

About the Author
Nathaniel T. Schutta is a software architect focused on cloud com‐
puting and building usable applications. A proponent of polyglot
programming, Nate has written multiple books and appeared in var‐
ious videos. Nate is a seasoned speaker, regularly presenting at con‐
ferences worldwide, No Fluff Just Stuff symposia, meetups,
universities, and user groups. In addition to his day job, Nate is an
adjunct professor at the University of Minnesota, where he teaches
students to embrace (and evaluate) technical change. Driven to rid
the world of bad presentations, Nate coauthored the book Presenta‐
tion Patterns with Neal Ford and Matthew McCullough. Nate
recently published Thinking Architecturally, available as a free down‐
load from VMware.

	Pivotal/VMware
	Copyright
	Table of Contents
	Chapter 1. The Microservice Revolution
	How Did We Get Here?
	What Is a Microservice?
	Microservices Are a Tool

	Chapter 2. Multiple Rates of Change
	Parts of Your System Evolve at Different Rates
	How Do We Know What Changes Faster Than the Rest?
	Applying the Strangler Pattern

	Chapter 3. Independent Life Cycles
	Always Be Changing
	Independent Life Cycles Boost Developer Productivity
	From Code to Prod: A Tale of Two Life Cycles
	Hypothesis-Driven Development
	Deployment Pipelines
	Move Fast and Fix Things

	Chapter 4. Independent Scalability
	The Monolith Forced Decisions Early—with Incomplete Information
	Not All Traffic Is Predictable
	Scale Up Where It Is Needed
	Monitoring for Fun and Profit
	All Services Are Equal (But Some Services Are More Equal than Others)
	Modernize Your Architecture to Use Modern Infrastructure

	Chapter 5. Failure Isolation
	No Service Is an Island
	Architectural Reviews
	Failures Find a Way
	The Circuit Breaker Pattern
	Spring Cloud Circuit Breaker
	Chaos Engineering

	Engineering Discipline

	Chapter 6. Indirection Layers
	Abstract Away External Dependencies
	Managing Your Services
	The Importance of Architecture

	Chapter 7. Polyglot Technology Stacks
	We’re a Java Shop
	One Size Fits None
	Paved Roads
	They’re Called Microservices

	Chapter 8. The Importance of Culture
	Culture Impacts Everything
	Evolving Your Organization

	Chapter 9. Migrating to Microservices
	Modular Monoliths, Macro Services, Oh My!
	Decomposing the Monolith
	Next Steps

	About the Author

