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Introduction 

Executive Summary 

Kubernetes is rapidly becoming the deployment platform of choice for enterprise applications.  
However, many misconceptions exist about the performance implications of running these 
applications on virtualized infrastructures compared to running directly on bare-metal hosts. This 
paper uses the open-source Weathervane 2 benchmark to compare the performance of an 

enterprise web application running on Kubernetes clusters deployed on VMware vSphere® 7.0 

Update 2 and on a bare-metal server. 

The results show that the performance of Kubernetes clusters deployed on vSphere with the 

VMware Tanzu® Kubernetes Grid™ (TKG) service can significantly exceed that of bare-metal 

Kubernetes clusters, particularly when using Kubernetes CPU limits on modern, multi-core hosts. 
The Weathervane benchmark uses Kubernetes CPU limits as part of its core design, and those 
limits have a dominant impact on the configurations and results in this paper. 

Initial performance results on the bare-metal cluster were poor as a result of the over-throttling of 
pods with the implementation of Kubernetes CPU resource limits and its behavior on large bare-
metal hosts. Those initial results are included in the lower sections of figure 5.  In order to improve 
the bare-metal results, several adjustments were made, including the enablement of Kubernetes 
CPU Manager policies and the modification of the workload to create a new Weathervane 
benchmark configuration size. Details are explained below in the Tuned Bare-Metal Results 
section. 

Even after the significant adjustments to improve the bare-metal results, the resulting comparison 
shows the vSphere cluster significantly outperformed the bare-metal cluster. 
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Figure 1. Results with bare-metal CPU Manager enabled and small2-applimit2 configuration size 

A further investigation of these results showed that poor CPU assignment decisions by the 
Kubernetes CPU Manager on bare metal were at least partly responsible for the performance gap.  
To get the best possible scores from the bare-metal cluster, additional tests were run with 
simultaneous multi-threading (SMT) turned off in the BIOS for the bare-metal server. The results 
from these tests are shown in the green/diamond line in figure 2 where the bare-metal cluster 
performed equivalently to the vSphere cluster at up to sixteen application instances. However, 
disabling SMT reduced the number of CPUs available to satisfy the CPU resource requests of the 
Weathervane application instances, thus limiting the peak performance to about 5% lower than the 
vSphere cluster. 
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Figure 2. Results with SMT disabled on the bare-metal cluster 

On vSphere with Tanzu, it is possible to achieve excellent performance without extraordinary 
tuning and configuration efforts when running enterprise applications with Kubernetes CPU limits 
on Kubernetes clusters. By using vSphere, you take advantage of virtualization benefits, including 
an elastic platform that lets you easily scale up with vCPUs or VMs, vMotion, DRS, and HA, to name 
a few. 
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Intended Audience 

vSphere administrators, Kubernetes cluster administrators, DevOps engineers, and developers 

Related Documents 

For performance best practices specific to Kubernetes on vSphere and vSphere with Tanzu, refer 
to the VMware technical whitepaper Performance Best Practices for Kubernetes with VMware 
vSphere with Tanzu and VMware Cloud Foundation with Tanzu. 

For general performance best practices for vSphere 7, refer to the VMware technical whitepaper 
Performance Best Practices for VMware vSphere 7.0.  

Test Environment 

Test Workload 

The data in this paper was generated using the Weathervane 2 performance benchmark.  
Weathervane 2 is an open-source benchmark that lets admins and engineers compare the 
performance characteristics of on-premises and cloud-based Kubernetes clusters. Weathervane is 
an application-level benchmark, which means that it includes a representative application that is 
deployed on the clusters under test. The impact of the configuration or tuning of the clusters on the 
application’s performance can be compared to determine which cluster provides the best 
performance for similar applications. 

The application provided by Weathervane is a multi-tier web application which includes stateless 
web and application services, as well as stateful data services. The application can be deployed in 
multiple pre-tuned configurations which vary the number of replicas of each service, the resource 
requests and limits for the services, and the amount of data used in each run. The tests 
documented in this paper use the small2 and the later added small2-applimit2 configuration sizes. 
To scale up load on the clusters under test, multiple instances of the application can be configured 
to run simultaneously with the unified workload driver. This can be thought of as modeling a multi-
tenant environment, with each independent application instance constrained by a specified amount 
of Kubernetes resource requests and limits. 

The workload driver generates load on the clusters by simulating users interacting with the 
application instances. The performance metric for Weathervane is the maximum number of 
simulated users that can interact with the application instances without violating any of the 
predefined quality-of-service metrics. This metric is called WvUsers, and a higher result indicates 
better performance.  

Weathervane uses Kubernetes CPU limits as part of its core design. Specifying CPU limits for the 
Tomcat pod ensures that it becomes the bottleneck for each application instance. The resulting 
workload typically bottlenecks on a characteristic of the system under test, such as CPU. Without 

https://www.vmware.com/techpapers/2021/vsphere-tanzu-kubernetes-perf.html
https://www.vmware.com/techpapers/2021/vsphere-tanzu-kubernetes-perf.html
https://www.vmware.com/techpapers/2020/vsphere-esxi-vcenter-server-70-performance-best-practices.html
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this limit, the workload would bottleneck on an internal limitation of the Weathervane application, 
such as the individual tuning of each service component with unbounded CPU availability. 

Weathervane supports several configuration parameters to allow customizing tests for specific 
testing goals. We used the defaults for all non-required parameters. Weathervane does require the 
user to specify the type of Kubernetes service to be used for ingress to the application from the 
workload drivers. The options are LoadBalancer, NodePort, and ClusterIP Services. LoadBalancer 
services can only be used with clusters which support provisioning external IP address for these 
services. For the tests documented in this paper, NodePort services were used. 

Additional information about Weathervane 2 can be found at  
https://github.com/vmware/weathervane. 

Testbed Configuration 

The tests discussed in this paper were run on the testbed depicted in figure 3. Four identical Dell 
PowerEdge R7525 physical servers were used with the following configuration: 

• Two AMD EPYC 7742 CPUs running at 2.25GHz. The CPUs each had 64 cores, each with two 
SMT threads, for a total of 256 logical processors 

• 2TB of memory 

• Storage: Three 1.75TB SSDs and one 1.46TB NVMe devices were used on each server. 

– The servers running vSphere used this storage to form a vSAN datastore. 

– The bare-metal server used this storage to provide persistent volumes to pods using 
Rook/Ceph, as discussed below.  

• Network: 40Gbps Ethernet 

https://github.com/vmware/weathervane
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Figure 3. Testbed diagram 

 

The two Test Servers hosted independent Kubernetes clusters. 

• One server hosted a Tanzu Kubernetes Grid (TKG) cluster running on vSphere 7.0 U2. 

• One server hosted a single-node, bare-metal Kubernetes cluster.   

The two Driver Servers hosted another Kubernetes cluster used to drive load to the Test Servers. 

• Two servers hosted a Kubernetes cluster running on vSphere 7.0 U2 for the workload driver 
pods. 

The details of the clusters on the Test Servers are discussed below. 

TKG Cluster 

On the vSphere test server, a Kubernetes cluster was created using the Tanzu Kubernetes Grid 
(TKG or TKGs) service. This cluster will be referred to as the TKG cluster in the remainder of this 
document. 

The TKG cluster had the following configuration: 

• vSphere with Tanzu, Version 7.0 Update 2 

• Kubernetes Version 1.18.15 

• 42 worker nodes, each with 4 vCPUs and 32GiB of memory (TKG best-effort-xsmall VM class) 

• 1 control plane node with 2 vCPUs and 4GiB of memory (TKG best-effort-small VM class) 
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• Networking: Calico was used for the Kubernetes networking overlay, because it had been used 
historically in this setup 

• Storage: Persistent volumes were allocated from a vSAN datastore using one NVMe as a 
caching device and three SSDs as capacity devices 

Bare-Metal Cluster 

On the bare-metal test server, a Kubernetes cluster was created using the kubeadm tool. This 
cluster will be referred to as the bare-metal cluster in the remainder of this document.   

The bare-metal cluster had the following configuration: 

• OS: Ubuntu 20.04.2 LTS 

• Kubernetes version 1.18.10 (vanilla edition) 

• This cluster was deployed as a single-node cluster, with the node acting as both the control 
plane node and worker node.  To run workloads on the node, the master taint was removed 
with the command: 

kubectl taint nodes --all node-role.kubernetes.io/master-. 

• The following customizations were made to the kubelet on the bare-metal node: 

cpuManagerPolicy: static 
systemReserved: 
  cpu: 200m 
  memory: 1Gi 
kubeReserved: 
  cpu: 1000m 
  memory: 32Gi 
maxPods: 500 

– The settings for cpuManagerPolicy, systemReserved, and kubeReserved were used to enable 
the Kubernetes CPU Manager.   

– The change to maxPods, from the default of 110, was made to allow sufficient pods to be run 
to max out the resources on the node. 

• Networking: Calico was used for the Kubernetes networking overlay   

• Storage: Persistent storage for the bare-metal cluster was provided using Rook/Ceph.  Data 
was stored on four OSDs, each on its own SSD device, with a separate NVMe device used as a 
block db device. 

• The following tunings were made at the OS level to improve the performance of the cluster or 
its ability to support the required resources: 

– Increased the number of transmit/receive descriptor rings for the Ethernet adapter in order 
to get better distribution of network interrupts 

ethtool -L eno33np0 combined 74 
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– Increased the maximum number of processes (nproc) to 8388608 

– Increased the maximum number of open files (nofile) to 8388608 

Baseline Results 
The first tests performed for this study used Weathervane with the small2 application configuration.  
The goal was to compare the performance of the TKG cluster with the bare-metal cluster at a 
variety of loads. The load was varied by scaling up the number of small2 instances and comparing 
the WvUsers achieved by each cluster for each configuration. The number of instances was 
increased until there was no further improvement in total performance, or until no additional 
instances could be accommodated by the CPU and memory resources of the clusters. 

Figure 4 shows the application pods and their CPU/memory requests for the small2 configuration.  
Each application instance consists of eight pods, with total CPU requests of 4.8 CPUs and total 
memory requests of 31.84 GiBytes. The Tomcat pod defines both resource requests and limits of 1.5 
CPUs and 5 GiBytes. Specifying CPU limits for the Tomcat pod ensures that it becomes the 
bottleneck for each application instance. 

 

Figure 4. Weathervane small2 configuration 

In these tests, the number of application instances of the small2 configuration was increased from 1 
to 28, at which point the CPU utilization approached saturation. 

Results 

Figure 5 shows a summary of the results obtained by running the Weathervane small2 
configuration on the vSphere and the bare-metal clusters. In these tests, the TKG cluster 
significantly outperformed the bare-metal cluster. The TKG cluster maxed out at almost 190,000 
WvUsers at 28 application instances, while the bare-metal cluster could only support about 36,000 
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WvUsers at 18 application instances.  After 18 instances, the bare-metal cluster was unable to run 
successfully. 

 

Figure 5. Baseline performance results 

Discussion 

The poor performance on the bare-metal cluster was unexpected. A root-cause investigation 
determined that the results were due to over-throttling of the application server pods, most likely 
due to the implementation of CPU limits in the Linux kernel combined with characteristics of both 
the application and the underlying hardware. Details of this over-throttling are discussed in this 
section. Efforts made to work around the problem and improve the performance of the bare-metal 
cluster are discussed in subsequent sections. 

CPU limits specified for Kubernetes pods are enforced in the Linux kernel using the Completely 
Fair Scheduler (CFS) bandwidth control implementation 
(https://www.kernel.org/doc/html/latest/scheduler/sched-bwc.html). The amount of CPU used by 
containers in a pod is limited by dividing time into periods and assigning a run-time quota for each 
period. The quota is proportional to the CPU limit specified for the container. The default period is 
100ms. In the case of the application server pod in the Weathervane small2 configuration, the limit 
for the Tomcat container is 1.5 CPUs, or 1500m cores. As a result, the container is given a quota of 
150ms of run-time in each 100ms period. The quota can be larger than the period because threads 
from the container can be running on multiple CPUs. As soon as all threads of the Tomcat process 
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have run for 150ms in a period, summed over all CPUs in the server, the container is throttled until 
the start of the next period.  

If a container is not able to use its entire compute quota due to the operation of CFS bandwidth 
control, then it is said to have been over-throttled. Figure 6 shows the average time that the 
Tomcat container was throttled by the CFS bandwidth control algorithm for both the TKG and bare-
metal Kubernetes clusters. This data was collected during runs with eight small2 application 
instances, corresponding to the eight application instance points in figure 5. The bare-metal run 
had a shorter duration due to stopping at a smaller WvUsers result. This chart shows that the 
container on the bare-metal host was throttled more than forty times as much as the TKG cluster 
despite handling significantly less load. During the periods of highest load, the container on the 
bare-metal cluster was throttled for about 5 seconds in every 100ms period, while on the TKG 
cluster it was throttled for about 0.1 second.  The high level of throttling on bare metal is possible 
because the throttled time is the sum of the time that a thread was throttled on any CPU in the 
system. Five seconds of throttled time is equivalent to 50 threads being throttled across 50 CPUs 
for the full 100ms. There is some throttling of the container on the TKG cluster, but this is expected 
due to the use of CPU limits and CPU-intensive nature of the container. On the bare-metal cluster, 
the large numbers of CPUs in the Kubernetes node combined with the multi-threaded nature of the 
Java application running in the container caused the kernel to over-throttle the container. To 
understand why this occurred, it is necessary to understand more about the operation of the CFS 
bandwidth control algorithm.  

 

Figure 6. Average throttled time 
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To enforce the CPU quota, the kernel tracks the amount of remaining quota time in each period.  
When a thread from the container is scheduled onto a CPU, the kernel allocates a 5ms slice from 
the quota to that CPU. If the thread does not use the entire slice, then the remaining time, minus 
1ms, is eventually returned to the remaining quota. If a thread is scheduled to run on a CPU but no 
time is left in the quota for the current period, then the thread is not allowed to run. This is true 
even if another CPU is currently holding an unused slice of the quota. 

It is likely that the over-throttling of the Tomcat container on the bare-metal cluster occurred 
because of this slicing mechanism. On the bare-metal hosts, each SMT thread, of which there are 
two per core, is seen as an independent CPU. As a result, to the Linux kernel the node contained 
256 CPUs. The Tomcat container was running a multi-threaded Java web application, and many of 
the threads were dedicated to handling short running HTTP requests. These threads could be 
scheduled across the large number of available CPUs. As soon as a new period started, the 150ms 
quota was divided into 5ms slices which were allocated to CPUs running threads from the 
application. However, 150ms / 5ms yields only 30 slices, far fewer than the number of active 
threads and the number of CPUs on which those threads were scheduled to run. As a result, it is 
likely that many of the threads were throttled for the entire 100ms period even though there was 
unused quota time allocated to other CPUs, thus drastically limiting the performance capability of 
the application on the bare-metal node. 

Complete details of the operation of CFS bandwidth control are beyond the scope of this paper, 
but an excellent explanation can be found here: 
https://engineering.indeedblog.com/blog/2019/12/cpu-throttling-regression-fix. 

It is important to note that far from being a corner case, this over-throttling is likely to be a 
common issue with multi-threaded applications running on Kubernetes nodes with large numbers 
of CPUs, such as nodes consisting of a single bare-metal server. There have been many 
performance issues reported involving Kubernetes limits, some of which may have been caused by 
this slicing mechanism. Some of these cases are detailed here: https://k8s.af/. 

Tuned Bare-Metal Results 
To improve the performance of the bare-metal cluster, it was necessary to reduce the impact of 
throttling due to CPU limits. This was done using the Kubernetes CPU Manager. The CPU Manager 
is a beta-level feature that enforces CPU limits by allocating exclusive use of a set of CPUs to a 
pod, rather than using CFS bandwidth control.  An overview of the CPU Manager can be found at 
https://kubernetes.io/blog/2018/07/24/feature-highlight-cpu-manager. 

In order to use the CPU Manager for a container within a pod, certain conditions must be met: 

• The CPU Manager must be enabled by setting the CPU Manager policy to static in the Kubelet 
settings for the cluster. The CPU Manager is not enabled by default.   

• The pod must fall into the Guaranteed QoS class, meaning that requests and limits are set for 
all containers in the pod, and they are equal.  

https://engineering.indeedblog.com/blog/2019/12/cpu-throttling-regression-fix/
https://k8s.af/
https://kubernetes.io/blog/2018/07/24/feature-highlight-cpu-manager
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• The CPU limits for the container must specify a whole number of CPUs. 

The first condition was met by enabling the CPU Manager on the bare-metal cluster. The second 
was already satisfied by the application server pod in the Weathervane small2 configuration.  
However, the third condition was not met by the small2 configuration, which specified a limit of 1.5 
CPUs for the Tomcat container in the application server pod.   

To enable the Kubernetes CPU Manager to work with Weathervane, we developed a new 
configuration in which the CPU limit for the Tomcat container was increased to a whole number of 
2 CPUs. In this configuration, called small2-applimit2, the CPU requests for the other pods were 
increased to handle the higher loads that were enabled by the increased limits. Typically, 
increasing CPU requests and limits to whole numbers for applications that do not need the 
increased capacity will result in pods holding resources that are left idle and unavailable for other 
applications—which might not be ideal. However, as Weathervane is a performance benchmark, 
the increased limit will be used to drive increased throughput.  Figure 7 shows the pods and 
resources requests and limits for the small2-applimit2 configuration. 

Figure 7. small2-applimit2 configuration 

Results 

Figure 8 shows a summary of the results obtained by running the Weathervane small2-applimit2 
configuration on the TKG cluster and the bare-metal cluster with the CPU Manager enabled. This is 
the same chart shown in figure 1. The bare-metal performance significantly improved over the 
original results. However, even with the application and cluster-level tuning, the TKG on vSphere 
deployment outperformed the bare-metal cluster.    
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Figure 8. Results with bare-metal CPU Manager enabled and small2-applimit2 configuration size 

Discussion 

In addition to eliminating the effect of over-throttling due to CPU limits, the bare-metal results in 
figure 8 reflect the improved compute locality obtained by using the CPU Manager to effectively 
pin containers to specific CPUs. However, an investigation of the bare-metal results revealed that 
the CPU Manager was making sub-optimal decisions when assigning the Tomcat containers to 
physical CPUs, without an apparent config option to alter the behavior. In all cases, the container, 
which had a limit of 2 CPUs, was assigned to two SMT threads on the same physical core. Because 
the SMT threads on the same core share resources, this gave a lower performance capability than 
using two SMT threads on separate cores.  

To determine the impact on performance of the placement decisions made by the CPU Manager, 
we ran tests with SMT disabled on the bare-metal server. The results are shown in figure 9. This is 
the same chart shown in figure 2. In this case, the performance of the two clusters is essentially the 
same out to 16 application instances. With SMT disabled, the reduced number of CPUs available for 
scheduling pods on the bare-metal cluster prevented us from running more than 17 application 
instances. The moderate CPU over-commitment on the vSphere-with-Tanzu cluster enabled us to 
run out to 20 application instances. As a result, the peak throughput for the TKG cluster was about 
5% higher than for the bare-metal cluster with SMT turned off. 
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Figure 9. Results with SMT disabled on bare-metal cluster 

Conclusion 
The results in this paper show that Kubernetes clusters deployed on VMware vSphere with Tanzu 
can match or exceed the performance of bare-metal clusters deployed on identical servers. In 
some cases, as shown here when running multi-threaded applications with Kubernetes CPU limits, 
the vSphere-based clusters can outperform bare metal by a significant margin.  

On vSphere, this performance advantage is achieved without the need for significant tuning and 
configuration steps or the modification of workloads for the use of beta state features like 
Kubernetes CPU Manager. 

As a platform of choice for enterprise applications running on Kubernetes clusters, VMware 
vSphere with Tanzu provides the benefits of a virtualized infrastructure and achieves excellent 
performance. 
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