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0. Introduction 
Persistent memory (PMEM) is a new technology that has the characteristics of memory but retains data 
through power cycles. PMEM bridges the gap between DRAM and flash storage. PMEM offers several 
advantages over current technologies like: 

• DRAM-like latency and bandwidth 

• CPU can use regular load/store byte-addressable instructions 

• Persistence of data across reboots and crashes 

These characteristics make PMEM very attractive for a varied set of applications and scenarios.  

Currently, there are two PMEM solutions available in the market: 

1. NVDIMM-N by DELL EMC and HPE: NVDIMM-N is a type of DIMM that contains both DRAM and 
NAND-flash modules on the DIMM itself. Data is transferred between those two modules at startup, 
shutdown, or any power loss event. The DIMMs are backed by a battery power source on the 
mainboard in case of power loss. Currently, both HPE and DELL EMC are offering 16 GB NVDIMM-N's [1] 
[2] [3] [4]. 

2. Scalable PMEM by HPE: This combines HPE SmartMemory DIMMs with NVMe drives and battery 
backup to create logical NVDIMMs. Data is transferred between DIMMs and NVMe drives. This 
technology can be used to create large scale PMEM systems [5]. 

The rest of the paper is organized as follows: 

1. We explain how PMEM can be configured and used in a vSphere environment. 

2. We describe our experimental setup and various PMEM configurations used. 

3. We show how applications with different characteristics can take advantage of PMEM in vSphere. Below 
are some of the use-cases: 

i. How PMEM device limits can be achieved under vSphere with little to no overhead of virtualization. 
We show virtual-to-native ratio along with raw bandwidth and latency numbers from fio, an I/O 
microbenchmark. 

ii. How traditional relational databases like Oracle can benefit from using PMEM in vSphere. 
iii. How scaling-out VMs in vSphere can benefit from PMEM. We used Sysbench with MySQL to show 

such benefits. 
iv. How modifying applications (PMEM-aware) can get the best performance out of PMEM. We show 

performance data from such applications, e.g., an OLTP database like SQL Server and in-memory 
database like Redis. 

v. Using vMotion to migrate VMs with PMEM which is a host-local device just like NVMe SSDs. We 
also characterize in detail, vMotion performance of VMs with PMEM.  

4. We outline some best practices on how to get the most out of PMEM in vSphere. 

5. Finally, we conclude this paper with a summary. 
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1. vSphere PMEM 
In this section, we describe how VMs can use PMEM in a vSphere environment. There are two ways of 
exposing PMEM to a VM: 

1. vPMEMDisk: vSphere presents PMEM as a regular disk attached to the VM. No guest OS or application 
change is needed to leverage this mode. For example, legacy applications on legacy OSes can utilize 
this mode. Note that vPMEMDisk configuration is available only in vSphere and not in bare-metal OS. 

2. vPMEM: vSphere presents PMEM as a NVDIMM device to the VM. Most of the latest operating systems 
(for example, Windows Server 2016 and CentOS 7.4) support NVDIMM devices and can expose them to 
the applications as block or byte-addressable devices. Applications can use vPMEM as a regular storage 
device by going through the thin layer of the direct-access (DAX) file system or by mapping a region 
from the device and accessing it directly in a byte-addressable manner. This mode can be used by 
legacy or newer applications running on newer OSes. 

Figure 1 shows the details of the PMEM architecture in vSphere. More information about vSphere PMEM can 
be found at docs.vmware.com [6] and storagehub.vmware.com [7]. 

 

Figure 1. vSphere PMEM Architecture 
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vSphere Host Configuration 
vSphere 6.7 identifies PMEM hardware and shows it in the hardware resources section of the host in 
vCenter as shown in Figure 2. The recognized PMEM hardware is mounted as a PMEM datastore as shown in 
Figure 3.   

 

Figure 2. vSphere showing PMEM as a hardware resource 
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Figure 3. vSphere showing PMEM datastore 

Virtual Machine Configuration  
1. vPMEMDisk can be added to a VM like any regular disk as shown in Figure 4. Make sure VM Storage 

Policy is set to Host-local PMem Default Storage Policy.  

2. vPMEM can be added to a VM as new NVDIMM device as shown in Figure 5.  
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Figure 4. Adding vPMEMDisk to a VM 

 

Figure 5. Adding vPMEM (NVDIMM) to a VM 
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2. Experimental Setup  
We did this performance study on both the PMEM platforms: HPE Scalable PMEM platform (Table 1) and Dell 
EMC NVDIMM-N PMEM platform (Table 2). Please note that performance is identical on both PMEM 
platforms since both are DRAM based solutions.  

 

Platform HPE ProLiant DL380 Gen10 

CPU 2 socket, 48 cores (96 threads) 

Intel Xeon Platinum 8160 @ 2.10GHz 

Memory 256 GB @ 2666 Mhz 

PMEM 512 GB 

Storage HPE NVMe SSD 

MO001600KWJSN 

SAN Violin Memory Array v6000 [8] 

64 x 256 GB SLC flash modules 

Network 40 GbE 

ESXi 6.7 GA 

Table 1. HPE Testbed (Scalable PMEM) 

Platform Dell EMC PowerEdge R740xd 

CPU 2 socket, 32 cores (64 Threads) 

Intel Xeon Platinum 8153 @ 2.0 GHz 

Memory 384 GB 

PMEM 192 GB 

Storage Dell EMC Express Flash NVMe PCIe SSD PM1725a 

ESXi vSphere 6.7 

Table 2. Dell EMC Testbed (NVDIMM-N) 
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Note: All our measurements (SQL Server experiments were conducted on DELL EMC NVDIMM-N) were 
done using HPE Scalable PMEM with 512GB of PMEM in a 2-socket HPE 380 Gen 10 server. We believe that 
the same general performance trend would be seen on other 2- or 4-socket servers using NVDIMM-N 
technologies. 

Configurations: 

We compare performance of various workloads across 4 different configurations as shown in Table 3. Note 
that, vPMEM-aware configuration is applicable only to some workloads. 

 

NVMe SSD Local NVMe SSD attached to VM via vNVMe adapter (Used as Baseline) 

vPMEMDisk PMEM attached as a disk to the VM via vNVMe adapter 

vPMEM PMEM attached as a NVDIMM device to the VM  

vPMEM-aware Application is modified to take advantage of the new byte-addressable PMEM 
software paradigms [8]. 

Table 3. Test Configurations 

3. Use-Cases of PMEM in vSphere 

i. I/O Performance with FIO 
FIO is an I/O microbenchmark to measure I/O performance [10]. We used it to quantify the virtualization 
overhead and measure raw bandwidth and latency. 

Highlights: 

• Virtualization overhead of PMEM is less than 3%. 

• The vPMEM-aware configuration can give up to 8x more bandwidth compared to that of an NVMe SSD. 

• Latency with vPMEM configurations is less than 1 microsecond. 

• The vPMEM-aware configuration can achieve bandwidth close to the device (memory) bandwidth. 
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Configuration: 

Table 4 gives the details of the FIO. 

OS CentOS 7.4  

CPU 4 vCPU 

vRAM 16 GB 

NVMe SSD 21 GB 

vPMEMdisk 21 GB 

vPMEM 21 GB 

Table 4. FIO VM configuration  

Table 5 gives the FIO parameters used. 

Ioengines libaio (default) and libpmem (in vPMEM-aware) 

Test cases random read, random read-write (50-50), random write 

Threads 4 for throughput runs; 1 for latency run 

File size 5 GB per thread 

OIOs 16 for NVMe SSD; 4 for vPMEMDisk; 1 for vPMEM 

Table 5. FIO workload configuration 

Virtualization Overhead 

To quantify the virtualization overhead of PMEM, we compared FIO throughput on bare-metal installation of 
Cent OS and a Cent OS VM running on ESXi. Figure 6 shows the virtual to native ratio. In all the scenarios, 
we measured less than 3% overhead. We selected FIO to show virtualization overhead since 
microbenchmarks typically stress the system the most and are expected to show the maximum overhead 
when virtualized. 
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Figure 6. Virtual to native ratio (FIO 4 KB) 

Bandwidth and Latency  

Figure 7 shows the bandwidth measured in megabytes per second for different configurations with 4 KB I/O 
size. Note that the vPMEM cases are run with 1 thread to have a fair comparison with vNVMe-based 
configurations in which I/O is performed by one vNVMe world/thread. In the random read case, the vPMEM-
aware configuration yields ~5x the bandwidth compared to that of an NVMe SSD. 

In the randwrite test, vPMEMDisk throughput is slightly lower than NVMe SSD. This is caused by the 
inefficient implementation of cache flush instructions in the current processors. We expect this to become 
better in next generation processors. 

 

Figure 7. FIO 4KB Throughput 
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Figure 8 shows the bandwidth measured with 512 KB I/O. In the random read test, the vPMEM-aware case 
achieved more than 11 gigabytes per second of bandwidth using one thread, which is around 8x compared 
to NVMe SSD. 

 

Figure 8. FIO 512KB Throughput 

  

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

randread randrw randwrite

B
an

d
w

id
th

 (
M

B
P

S
)

FIO - 512 KB Throughput

NVME SSD vPMEMDisk vPMEM - 1 thread vPMEM-aware - 1 th



 
Persistent Memory Performance on vSphere 6.7: Performance Study |  13 

Figure 9 shows the raw latency in microseconds with different configurations. Both vPMEM configurations 
yielded sub-microsecond latencies. 

 

Figure 9. FIO 4KB Latency 
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gigabytes per second using the vPMEM-aware configuration. 
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We used the hammerdb-2.23 [10] tool to benchmark Oracle Database (version 12c).  

Highlights: 

• 35% application performance improvement (Hammer-DB Transactions per minute) with vPMEM 

• Up to 4.5x increase in Oracle IOPs  

• 1.4x DB reads, 3x DB writes and up to ~17x increase in DB Log writes  

• Up to more than 57x decrease in Oracle DB operations (read/write) latency 

  

0

50

100

150

200

250

randread randrw randwrite

T
im

e
 (

m
ic

ro
se

c)
FIO - 4 KB Latency

NVME SSD vPMEMDisk vPMEM vPMEM-aware



 
Persistent Memory Performance on vSphere 6.7: Performance Study |  14 

Configuration: 

Table 6 shows Oracle VM configuration and Table 7 shows the HammerDB parameters used to test Oracle 
DB. Some additional configurations and parameters are mentioned in Appendix A. 

OS CentOS 7.4  

CPU 48 vCPUs 

vRAM 128 GB (SGA size = 35GB) 

NVMe SSD 400 GB DB, 100 GB Logs 

vPMEM 400 GB DB, 100 GB Logs 

Table 6. Oracle VM Configuration 

Virtual Users 70 

Warehouses  3500 

Warm Up Time 5 minutes 

Run Time 25 minutes 

Tests-Profile  TPC_C  

Table 7. HammerDB Parameters for Oracle 

Results: 

All the IOPS and latency numbers reported in Figure 10 and Table 8 are obtained via iostats tool in linux [11] 
[12]. More detailed iostats output is in Appendix A. 

Figure 10 shows the breakdown of IOPS achieved by Oracle DB. The NVMe SSD bars show that read-to-
write ratio is 75:25 which makes it a typical OLTP workload. The most fascinating data point in Figure 12 is 
16.7x increase in DB Log writes/sec to almost ~90K writes/sec with vPMEM. The Oracle DB writer issues 
smaller log writes at a high frequency because of low device latency which results in more read/write DB 
operations. This translates to overall application throughput. Log write size with NVMe SSD is 40KB and with 
vPMEM it is 3.4KB (from iostats). 
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Figure 10. HammerDB with Oracle IOPS breakdown 

 

Table 8 shows the dramatic decrease in latencies of DB read/write operations and Log writes. The minimum 
latency reported by iostats tool is 10 microsecs (0.01 milliseconds). 
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Table 8. Hammer-DB with Oracle Latency breakdown (using iostat) 
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Figure 11. Hammer-DB Throughput gain with vPMEM 

Note: We also increased virtual users to a value (80 users) where NVMe SSD achieved the maximum 
performance. Even when comparing 80 virtual users for NVMe SSD, vPMEM at 70 users was 29% better.  
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Table 10 gives the Sysbench parameters used. 

DB Tables 6 

Rows per table 90 M 

DB Size 120 GB 

Sysbench Threads 12 

Tests oltp_read_only 

oltp_read_write (75/25) 

oltp_write_only 

Table 10. Sysbench workload configuration  

Single VM Results 

Figure 12 shows the normalized throughput reported by Sysbench in different configurations. The vPMEM 
case yields up to 5.5x better throughput compared to NVMe SSD. 

 

 

Figure 12. Sysbench Throughput 
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Figure 13. Sysbench latency 

Scale-Out Results 

We used multiple copies (two and four) of the same VM from Table 7. Figure 14 shows the scaling of 
multiple VMs in different configurations for oltp_read_write test. We observe that vPMEMDisk and vPMEM 
can scale to around 3.5x while NVMe SSD stops at 2x. We see similar trend in the other two tests 
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Figure 14. Sysbench throughput scaling for oltp_read_write test 
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Figure 15. Sysbench latency scaling 
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Note: Without TOFL, SQL Server has to wait till the log block is hardened to the disk. 

 

Figure 16. SQL Server-TOFL 

Configuration: 

OS Windows Server 2016 

CPU 8vCPU 

vRAM 16GB (SQL.Max.Memory = 14GB) 

NVMe SSD 100GB DB, 22GB Logs 

vPMEM 100GB DB, 22GB Logs 

Table 11: SQL Server VM Configuration 

Virtual Users 10 

Warehouses  1000 

Warm Up Time 5 minutes 

Run Time 25 minutes 

Tests-Profile  TPC_C  

Table 12: HammerDB parameters for SQL Server 
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We used five configurations to quantify the performance gains: 

1. SSD – DB and Logs are on NVME SSD 

2. Logs-vPMEMDisk – Only Logs are moved to vPMEMDisk (DB stays on SSD) 

3. Logs-vPMEM – Only Logs are moved to vPMEM (DB stays on SSD) 

4. TOFL (Tail-of-the-log) – Only portion of the log buffer (a.k.a TOFL) is moved to vPMEM DAX volume 

5. vPMEM-TOFL – DB and Logs both are moved to vPMEM and portion of log buffer is on vPMEM DAX 
volume 

Results: 

The various numbers reported in Figure 17 to 18 and Table 13 are obtained using Windows perfmon counters 
and SQL Server perfmon events. More details about the counter descriptions can be found in Appendix C. 

Figure 17 shows the IOPS breakdown for the different configurations. In the first three configurations, there 
is no SQL-specific PMEM change. It shows 20% increase in Log Writes/sec by just moving the Logs (22 GB) 
to vPMEM. This results in 12% increase in performance as shown in Figure 24. The reason for more Log 
writes is because LogFlushWaitTime is reduced by 4.5x to 65 msecs. In the TOFL configuration, only 20 MB 
of Log buffer is mapped as byte-addressable PMEM.  

The LogFlushWaits/sec event in Figure 18. It reduced by 114x to a value of 53. This is because SQL Server 
doesn’t have to wait until the I/O is persisted on the disk. As soon as the commit arrives, the transaction is 
complete. The DB log writes/sec is just 340 as shown in Figure 18. The reason is that the perfmon counter 
does not capture direct writes (memory load/store) to the PMEM since it is in DAX mode. The log write size 
increased to 61 KB (3.6 KB in the SSD case) in TOFL. In the vPMEM-TOFL configuration, the 
LogFlushWaitTime reduced to 3.2 msecs, and the performance increased by 22% compared to baseline 
NVMe SSD case. The CPU utilization of the VM is 95% in the vPMEM-TOFL configuration as compared to 
baseline (81% CPU utilization).  

Notes: 

1. % Processor Time perfmon counter is used for CPU numbers. 

2. LogFlushes/sec in Figure 18 is roughly equal to DB Log Writes/sec in Figure 17. 

3. We do not show latency numbers because Windows perfmon latency counters cannot capture 
anything less than 10 milliseconds of latency. 
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Figure 17. HammerDB with SQL Server IOPs breakdown 

  

Figure 18. SQL Server Perfmon Flush Events 
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Configuration LogFlushWaitTime (msecs) 

SSD 296.4 

Logs-vPMEMDisk 107.4 

Logs-vPMEM 65 

TOFL 9.5 

vPMEM-TOFL 3.2 

Table 13: SQL Server Perfmon Flush Time Event 

 

 

Figure 19. HammerDB throughput gain with SQL Server  
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PMEM-aware Redis offers the following benefits: 

• Better performance with persistence and perfect consistency for all operations. This makes a case for 
using PMEM-aware Redis as a primary database. 

• Instant recovery from crash. PMEM-aware Redis does all operations to and from PMEM, which persists 
at crash. It does not need to load any data from disk to memory at initialization. On the other hand, 
vanilla Redis must load the database from disk to memory at initialization, which can take up to several 
minutes. 

We used memtier_benchmark, which is an open source benchmarking tool for key-value stores to drive 
Redis [18].  

Highlights: 

• Redis throughput is 2.4x better in the vPMEM-aware case compared to NVMe SSD. 

• The vPMEM-aware configuration yields 12x better latency. 

• The vPMEM-aware configuration performs much better than vPMEM, making a case to modify 
applications 

Configuration: 

Table 14 gives the details about the Redis VM. 

 

OS CentOS 7.4 

CPU 4 vCPUs 

vRAM 128 GB 

NVMe SSD 128 GB 

vPMEMdisk 128 GB 

vPMEM 128 GB 

Table 14. Redis VM configuration  
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Table 15 shows the Redis parameters used. 

DB Size 25M keys (120 GB in memory) 

Data Size 4 KB 

Driver memtier_benchmark 

Throughput 
parameters 

pipeline=4; clients=50; threads=4 

Latency parameters pipeline=1; clients=1; threads=1 

Tests 0% SETs; 20% SETs; 50% SETs; 80% SETs; 100% SETs 

Table 15. Redis workload configuration  

Results: 

Figure 20 shows the normalized throughput reported by memtier_benchmark in different configurations. 
The 100% SETs case stresses the storage most in which the vPMEM-aware configuration, provided 2.4x 
better throughput. Moreover, vPMEM-aware throughput is 1.7x compared to vPMEM. 

 

Figure 20. Redis throughput 

Figure 21 shows the normalized latency per operation reported by memtier_benchmark. Again, in the 100% 
SETs case, latency with vPMEM-aware is 12x better than NVMe SSD and 2.8x better than vPMEM. 
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Figure 21. Redis latency 

Figure 22 shows the crash recovery time in seconds. Note that, vPMEM-aware Redis recovers instantly. 

 

Figure 22. Redis crash recovery time 
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v. vMotion Performance 
vSphere supports vMotion of both vPMEMDisk and vPMEM. vPMEMDisk vMotion is conducted as XvMotion, 
where both local storage and memory contents are transferred to another host. vPMEM vMotion is 
conducted as compute vMotion, where vPMEM is transferred as memory along with vRAM. Note that, PMEM 
is a host local storage and seamless live-migration like vMotion is only possible in vSphere environment 
(unlike bare-metal OS) 

We used 2 identical hosts connected over 40 GbE network. We created 3 vmknics for vMotion over the 40 
GbE physical NIC. 

Oracle DB vMotion  

In this section, we show vMotion performance with a VM running HammerDB against an Oracle database. 
Highlights: 

• vMotion time is 30% lower in the vPMEM configuration compared to the NVMe SSD configuration 

Configuration: 

We used the VM detailed in Table 18 to do the vMotion between hosts. Client and Server are in different 
VMs on different hosts connected via 10G link. 

Results: 

In both the PMEM cases, downtime is less than half of a second as shown in Table 16. 

 
 

Memory Transfer (GB) Disk Transfer (GB) Downtime 
(secs) 

Total Duration 
(secs) 

SAN 128 0 0.293 53.04 

NVMe SSD 128 485 0.534 526.64 

vPMEMDISK 128 485 0.284 631.89 

vPMem 128 + 485 0 0.259 379.67 

Table 16. vMotion HammerDB Workload Configuration 

We see that vPMEM vMotion is 30% faster than that of the NVMe SSD configuration, even though the 
amount of data transferred is the same in both cases. As explained in FIO results, vPMEMDisk vMotion falls 

under the pure write scenario and as a result the vMotion duration is longer. 

Figure 23 shows the normalized throughput reported by the below Oracle query while vMotion is occurring.  

select value from v$sysstat where name='user commits'; 

This metric closely tracks the HammerDB throughput. We see that in all the cases the throughput is restored 
to normal after the vMotion is complete. The SAN performane in Figure 23 is roughly 60% of NVMe SSD. 
Although the performance is lower with SAN it comes with the added benefit of vSphere High Availability 
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(HA). All other configurations (local storage) don’t have vSphere HA support. Interestingly, when vMotion is 
taking place, the throughput in the vPMem case is 13% better than the NVMe SSD case with no vMotion. 

 

Figure 23. HammerDB vMotion performance 

Redis vMotion 

We used the Redis VM detailed in Table 17 for vMotion between the hosts. We added SAN configuration to 
get a baseline with compute vMotion. Table 13 gives the details of the Redis parameters used in this test. 

DB Size 25M keys (120 GB in memory) 

Data Size 4 KB 

Driver memtier_benchmark 

Parameters pipeline=4; clients=50; threads=4 

Tests 50% SETs 

Table 17. vMotion Redis workload configuration 

Results: 

Table 18 shows the amount of memory and disk transferred, along with VM downtime and total duration for 
vMotion. In the vPMEM case, both 128 GB of vRAM and 128 GB of vPMEM need to be transferred. In the 
vPMEM-aware case, vRAM is not touched by Redis and only few gigabytes of vRAM need to be transferred 
along with the 128 GB of vPMEM. Although the amount of memory (RAM or PMEM) transferred is the same 
in both SAN and vPMEM-aware cases, the total vMotion duration is higher in the vPMEM-aware case. We 
believe this is because memory is touched/dirtied at a higher rate in vPMEM-aware case and this results in 
more pre-copy-phase iterations of vMotion. Interested readers can learn more about vMotion details in 
vMotion Architecture, Best Practices, and Performance in vSphere 5.0 [16]. 
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Memory Transfer 
(GB) 

Disk Transfer (GB) Downtime 
(secs) 

Total Duration 
(secs) 

SAN 128 0 0.128 58.91 

NVMe SSD 128 128 0.123 161.93 

vPMEMDISK 128 128 0.449 194.59 

vPMem 128 + 128 0 0.305 108.52 

vPMEM-aware 128 0 0.186 85.84 

Table 18. vMotion Redis down time 

Note: Spectre/Meltdown mitigations can impact the performance of a workload depending on the I/O rate 
and/or the frequency of system calls. 1 

4. Best Practices 
Here are some of the best practices based on our performance testing: 

1. If PMEM capacity is limited, first move the database logs to PMEM first to get performance benefits 
of PMEM. 

2. Scale-out VMs with PMEM to get the most benefit out of the PMEM device in vSphere. 

3. vPMEMDisk is slightly slower than SSD for write-only workloads. This is due to the inefficient 
implementation of Cache Flush instructions in current processors. 

5. Conclusions 
In summary: 

• vSphere can achieve close to PMEM device bandwidth and latency  

• Virtualization overhead of PMEM in vSphere is less than 3% 

• vSphere PMEM gives up to 8x throughput and improvement in micro benchmarks and up to 35% 
improvement in Tier-1 workloads compared to NVMe SSD. 

• Scaling out VMs on vSphere PMEM can take full advantage of the device bandwidth. 

• Performance of VMs with PMEM during vMotion is much better than NVMe SSD (or All-flash SAN) 
performance (even when there is no vMotion). 

                                                        

1 We use kernel 3.10.0-693.21 (patched) to measure the impact of Spectre/Meltdown mitigations. In FIO, we see a 38% loss 
in the vPMEM configuration and only a 7% loss in the vPMEM-aware (libpmem) configuration. The lower overhead in 
libpmem is because it is a user-space library. For OLTP workloads, like HammerDB with Oracle Database, we observe a 
less than 10% performance degradation with vPMEM. 
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6. Appendix  

A. HammerDB Oracle 
We used large pages at system boot and THP in Linux was disabled. We also set priority for LGWRT and DB 
WRT via this command: 

chrt --rr -p 83 -$P 

We figured out that this command was needed to get the best performance because when CPU is near 
saturation log writer does not get scheduled optimally resulting in sub-optimal performance.  

HammerDB client and Oracle server are in the same VM for results in Section ii. 

Iostats for pmem devices can be enabled via the following command.  

$ echo 1 > /sys/block/pmem<n>/queue/iostats 

I/Os that go through DAX paths (mounted using –o dax option) are not counted in iostat output. In this 
experiment, the -o dax option did not make a difference to performance, so we mounted the pmem devices 
without the –o dax option to collect detailed iostats for more insights.  

The nvme0n1/pmem1 – nvme0n10/pmem10 have Oracle DB tables. Nvme0n11/pmem11 has the Oracle redo 
logs.  

Device:         rrqm/s   wrqm/s     r/s     w/s    rkB/s    wkB/s avgrq-sz avgqu-sz   await r_await w_await   

nvme0n1           0.00     0.20 1959.90  439.17 15679.20  8526.13    20.18     0.89    0.37    0.35    0.49    

nvme0n2           0.00     0.20 1993.73  475.53 15949.87  9099.73    20.29     0.92    0.37    0.34    0.50    

nvme0n3           0.00     0.20 1888.13  474.13 15105.07  9939.47    21.20     0.93    0.39    0.35    0.57    

nvme0n4           0.00     0.20 1864.33  451.40 14914.67  8845.87    20.52     0.90    0.39    0.34    0.59    

nvme0n5           0.00     0.20 1861.33  449.87 14890.67  9002.13    20.68     0.89    0.39    0.35    0.55    

nvme0n6           0.00     0.20 1862.23  457.00 14897.87  8779.20    20.42     0.91    0.39    0.35    0.57    

nvme0n7           0.00     0.20 1841.60  443.93 14732.80  8446.93    20.28     0.91    0.40    0.35    0.61    

nvme0n8           0.00     0.20 1857.67  435.93 14861.33  7655.73    19.63     0.91    0.40    0.34    0.62    

nvme0n9           0.00     0.20 1925.17  444.00 15401.33  7873.33    19.65     0.93    0.39    0.35    0.60    

nvme0n10          0.00     0.20 1989.57  448.10 15916.53  7865.87    19.51     0.96    0.39    0.34    0.61    

nvme0n11          0.00    56.80    0.07 5367.10     0.03 206904.32   77.10     0.48    0.09    0.00    0.09    

 

Device:         rrqm/s   wrqm/s     r/s     w/s    rkB/s    wkB/s avgrq-sz avgqu-sz   await r_await w_await   

pmem1             0.00     0.00 2776.40 1325.80 22211.20 13635.73    17.48     0.01    0.00    0.00    0.00    

pmem2             0.00     0.00 2782.53 1338.67 22260.27 12730.40    16.98     0.01    0.00    0.00    0.00    

pmem3             0.00     0.00 2733.27 1496.60 21866.13 15594.93    17.71     0.01    0.00    0.00    0.00    

pmem4             0.00     0.00 2583.43 1426.67 20667.47 15173.87    17.88     0.01    0.00    0.00    0.00    

pmem5             0.00     0.00 2590.70 1444.27 20725.60 14511.47    17.47     0.01    0.00    0.00    0.00    

pmem6             0.00     0.00 2574.03 1390.80 20592.27 13338.13    17.12     0.01    0.00    0.00    0.00    

pmem7             0.00     0.00 2667.43 1356.27 21339.47 12721.87    16.93     0.01    0.00    0.00    0.00    

pmem8             0.00     0.00 2602.90 1318.87 20823.20 11549.87    16.51     0.01    0.00    0.00    0.00    
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pmem9             0.00     0.00 2628.10 1344.07 21024.80 12040.27    16.65     0.01    0.00    0.00    0.00    

pmem10            0.00     0.00 2672.37 1305.87 21378.93 11498.13    16.53     0.01    0.00    0.00    0.00    

pmem11            0.00     0.00    0.00 89777.27    0.00 300545.35    6.70     0.09    0.00    0.00    0.00    

B. Sysbench with MySQL 
The below iostats show the IO statistics when a single VM is running on NVMe SSD. Note that just one 
instance of Sysbench can exercise close to 550 MBPS from the storage device and scaling to 4 VMs need 
2200 MBPS bandwidth. 

read_write (79/21) 

Device:         rrqm/s   wrqm/s     r/s     w/s       rMB/s    wMB/s avgrq-sz   avgqu-sz  await r_await w_await   

nvme0n1         0.00   934.50   26331.50 6645.50   411.43   128.95    33.56     9.93      0.30    0.36    0.07  

C. HammerDB SQL Server  
Table 19 describes the SQL Server 2016 [13]. 

Log Flush Wait Time Total wait time (in milliseconds) to flush the log. Indicates the wait time for log records to 
be hardened to disk. 

Log Flush Waits/sec Number of commits per second waiting for the log flush. 

Log Flush Write Time 
(ms) 

Time in milliseconds for performing writes of log flushes that were completed in the last 
second. 

Log Flushes/sec Number of log flushes per second. 

Table 19. Description of Log Flush events 
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